Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs

Yannan Nellie Wu¹, Joel S. Emer^{1,2}, Vivienne Sze¹

¹ MIT ² NVIDIA

Massachusetts Institute of Technology

Accelergy Overview

- An architecture-level energy estimator
- Flexibly characterizes various basic building blocks of different technologies
- Succinctly models diverse and complicated designs
- Improves estimation accuracy via fine-grained classification of operations
- Achieves 95% accuracy in evaluating a deep neural network (DNN) accelerator – Eyeriss [ISSCC 2016]

Energy Consumption Concerns

Data and computation-intensive applications are power hungry

We must quickly evaluate energy efficiency of arbitrary potential designs in the large design space

• Physical-Level Energy Estimator (Synopsys Prime Power, Cadence Joules)

• Physical-Level Energy Estimator (Synopsys Prime Power, Cadence Joules)

Accelergy Overview

- An architecture-level energy estimator
- Flexibly characterizes various basic building blocks in the design
- Succinctly models diverse and complicated designs
- Improves estimation accuracy via fine-grained classification of operations
- Achieves 95% accuracy in evaluating a deep neural network (DNN) accelerator – Eyeriss [ISSCC 2016]

• Architecture-Level Energy Estimators

• Design-Specific Accelerator Estimators: Aladdin[ISCA2014], fixed-cost[Asilomar2017]

• Design-Specific Accelerator Estimators: Aladdin[ISCA2014], fixed-cost[Asilomar2017]

Architecture Description

	Energy Reference Table (ERT)		
	Comp.	Action	Energy
·	GLB	access()	100pJ
	buffer	access()	10pJ
	MAC	compute()	5pJ

Energy Estimator

Design-Specific Accelerator Estimators: Aladdin[ISCA2014], fixed-cost[Asilomar2017] ۲

Energy Estimator

Action Counts

Design-Specific Accelerator Estimators: Aladdin[ISCA2014], fixed-cost[Asilomar2017] ۲

Energy Estimator

Energy Estimations

Action Counts

Design-Specific Accelerator Estimators: Aladdin[ISCA2014], fixed-cost[Asilomar2017]

Energy Estimator

Accelergy Overview

- An architecture-level energy estimator
- Flexibly characterizes various primitive components of different technologies
- Succinctly models diverse and complicated designs
- Improves estimation accuracy via fine-grained classification of operations
- Achieves 95% accuracy in evaluating a deep neural network (DNN) accelerator – Eyeriss [ISSCC 2016]

Use energy estimation plug-ins to characterize primitive components

*available at http://accelergy.mit.edu

Use energy estimation plug-ins to characterize primitive components

*available at http://accelergy.mit.edu

- Practical architecture designs involve much more details
 - Example: storage units with local address generators (AGs)

- AG_SRAM is an abstract hierarchy
- Buffer is of SRAM type

- Practical architecture designs involve much more details
 - Example: storage units with local address generators (AG)

Let's construct a more practical design!

- Practical architecture designs involve much more details
 - Example: storage units with local address generators (AG)

Let's construct a more practical design!

Existing Work - Modeling Complicated Designs

- Existing work that aims to succinctly model complicated architectures
 - Wattch[ISCA2000], McPAT[MICRO2009]

Use a fixed set of compound components to represent the architecture

Components that can be decomposed into lower level components

Existing Work - Modeling Complicated Designs

- Existing work that aims to succinctly model complicated architectures
 - Wattch[ISCA2000], McPAT[MICRO2009]

The fixed set of compound components is not sufficient to describe arbitrary accelerator designs

Accelergy Overview

- An architecture-level energy estimator
- Flexibly characterizes various primitive components of different technologies
- Succinctly models diverse and complicated designs
- Improves estimation accuracy via fine-grained classification of operations
- Achieves 95% accuracy in evaluating a deep neural network (DNN) accelerator – Eyeriss [ISSCC 2016]

Accelergy: Succinctly Model Arbitrary Architecture

AG_SRAM is an user-defined compound component

Design

Architecture described with compound components and primitive components

Accelergy: Succinctly Model Arbitrary Action Counts

Tedious action counts in terms of primitive component actions

Accelergy: Succinctly Model Arbitrary Action Counts

Accelergy: Succinctly Model Arbitrary Action Counts

Accelergy: Succinctly Model Complex Designs

Accelergy: Succinctly Model Complex Designs

Additional Challenge: Inaccurate Modeling of Energy/Action

• Existing architecture-level energy estimators only model coarse action types

Fine-grained Actions

Accelergy Overview

- An architecture-level energy estimator
- Flexibly characterizes various primitive components of different technologies
- Succinctly models diverse and complicated designs
- Improves estimation accuracy via fine-grained actions
- Achieves 95% accuracy in evaluating a deep neural network (DNN) accelerator – Eyeriss [ISSCC 2016]

Accelergy: Fine-grained Action Classification

Accurate estimation with a primitive component library

Accelergy: Fine-grained Action Classification

Accurate estimation with a primitive component library*

Accelergy Overview

- An architecture-level energy estimator
- Flexibly characterizes various primitive components of different technologies
- Succinctly models diverse and complicated designs
- Improves estimation accuracy via fine-grained actions
- Achieves 95% accuracy in evaluating a deep neural network (DNN) accelerator – Eyeriss [ISSCC 2016]

Energy Evaluations on Eyeriss

- Experimental Setup:
 - Workload: Alexnet weights & ImageNet input feature maps
 - Ground Truth: Energy obtained from post-layout simulations

Energy Evaluations on Eyeriss

- Experimental Setup:
 - Workload: Alexnet weights & ImageNet input feature maps
 - Ground Truth: Energy obtained from post-layout simulations

Total Energy and Coarse Energy Breakdown

- Total energy estimation is 95% accurate of the post-layout energy.
- Estimated relative breakdown of the important units in the design is within 8% of the post-layout energy.

PE Array Energy Breakdown

• Comparisons with existing work: Aladdin and fixed-cost

0.26 (r n) 0.24 Energy Consumption 0.22 0.20 0.18 0.16 0.14 ground truth Accelergy 0.12 ▲ Aladdin • fixed-cost 0.10

Energy Breakdown of PEs across the Array

PEs that process data of different sparsity

PE Array Energy Breakdown

• Comparisons with existing work: Aladdin and fixed-cost

Not aware of the finegrained actions related to zero-gating optimization

Energy Breakdown of PEs across the Array

PEs that process data of different sparsity

PE Array Energy Breakdown

Comparisons with existing work: Aladdin and fixed-cost

Inaccurate energy characterization of components

0.26 Energy Consumption (μ J) 0.24 0.22 0.20 0.18 0.16 0.14 ground truth ___ Accelergy 0.12 ▲ Aladdin fixed-cost 0.10

Energy Breakdown of PEs across the Array

PEs that process data of different sparsity

PE Energy Breakdown

• Comparisons with existing work: Aladdin and fixed-cost

100 ground truth 90 Energy Consumption (n J) **Zero-gating action** 80 Accelergy type not reflected 70 Aladdin 60 ■ fixed-cost 50 40 30 20 10 0 MAC ifmap spad psum spad weights spad

Energy Breakdown of components inside a PE

PE Energy Breakdown

• Comparisons with existing work: Aladdin and fixed-cost

Energy Breakdown of components inside a PE

Conclusion

- Accelergy is an architecture-level energy estimator that
 - Accelerates accelerator design space exploration
 - Provides flexibility to
 - Describe a diverse range of accelerator designs
 - Support estimation of different technologies, e.g., CMOS, RRAM, optical
 - Achieves high accuracy energy estimations
 - 95% accurate for the Eyeriss accelerator
- Open-source code available at: http://accelergy.mit.edu

Acknowledgement: DARPA, Facebook, MIT Presidential Fellowship