
1

PLEASE INSTALL THE DOCKER FOR OUR FUN
EXERCISES

Instructions on our tutorial website: http://accelergy.mit.edu/tutorial.html

Change the UID or GID as instructed in the file

(if needed)

Updated test: cd ./exercises/timeloop/00-conv1d-1level; timeloop-model */*.yaml

http://accelergy.mit.edu/tutorial.html

Joel S. Emer NVIDIA, MIT

Vivienne Sze MIT

Angshuman Parashar NVIDIA

Po-An Tsai NVIDIA

Yakun Sophia Shao UC Berkley

Yannan Nellie Wu MIT

TIMELOOP / ACCELERGY
TUTORIAL

MICRO 2019

3

SCHEDULE

1:00 – 2:30PM Timeloop lecture + exercises

2:30 – 3:00PM Timeloop free lab time

3:00 - 3:30PM Coffee break

3:30 – 4:30PM Accelergy lecture + exercises

4:30 – 5:00PM Accelergy + Timeloop free lab time

4

MOTIVATION

5

DNN ACCELERATORS

Arithmetic

Design Considerations

Data Movement

DRAM

Register

File *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Register

File

Register

File

Register

File* * * *

On-chip

Buffer

6

DNN ACCELERATORS

Arithmetic

Design Considerations

Data Movement

DRAM

Register

File *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Register

File

Register

File

Register

File* * * *

On-chip

Buffer

7

DATA MOVEMENT

Why it’s important

VGG16 conv 3_2

Multiply Add Ops 1.85 Billion

Weights 590 K

Inputs 803 K

Outputs 803 K

Energy costs

8-bit Integer Multiply 0.2 pJ

Fetch two 8-bit operands from DRAM 128 pJ

Fetch two 8-bit operands from large SRAM 2 pJ

Fortunately…
Re-use

8

EXPLOITING REUSE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

2D hardware array7-dimensional network layer

Convolutional Reuse
• Slide filter over input plane
Input Activation Reuse
• Multiple filter blocks over same inputs
Output Activation Reuse
• Accumulation sum over channels
Batch Reuse
• Re-apply filters to new inputs

DRAM Buf RF *Temporal

Multicast Forwarding

Algorithmic

Reuse

map

Hardware

Reuse

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

Flexible architectures may allow millions of alternative mappings of a single workload

9

MAPPING CHOICES

480,000 mappings shown

Spread: 19x in energy efficiency

Only 1 is optimal, 9 others within 1%

Energy-efficiency of peak-perf mappings of a single problem

A mapper needs a good cost model to find
an optimal mapping

A model needs a mapper to evaluate a
DNN workload on an architecture

6,582 mappings have min. DRAM accesses
but vary 11x in energy efficiency

10

TIMELOOP / ACCELERGY
Tools for Evaluation and Architectural Design-Space Exploration of DNN Accelerators

Model variety of DNN acceleratorsTarget every architecture supported by Model

ACCELERGY

11

WHY TIMELOOP/ACCELERGY?

Microarchitectural model (Timeloop/Accelergy)

• Expressive: generic, template based hardware model

• Fast: faster than native execution on host CPUs

• Accurate: validated vs. design-specific models

Technology model (Accelergy)

• Allows user-defined complex architectural components

• Plugins for various technology models, e.g., Cacti, Aladdin, proprietary databases

Built-in Mapper (Timeloop)

• Addresses the hard problem of optimizing data reuse, which is required for faithful

evaluation of a workload on an architecture

12

TIMELOOP VALIDATION

13

VALIDATION: EYERISS
Vs. ISCA 2016 Eyeriss Energy Model

Reference Timeloop

14

VALIDATION: NVDLA-DERIVED PE (ENERGY)

Within 8% error across all workloads

15

VALIDATION: NVDLA-DERIVED PE
(PERFORMANCE)

Within 10% error

Outliers

16

CASE STUDIES

17

CASE STUDY: TECHNOLOGY MODEL

18

CASE STUDY: MEM HIERARCHY

19

CASE STUDY: EXISTING DESIGNS

20

CASE STUDY: EXISTING DESIGNS

21

FUN WITH TIMELOOP

THE MODEL

22

INVOKING THE MODELProblem

Architecture

Mapping

ACCELERGY

23

EXERCISE 0: PROBLEM

for r = [0:R):
for p = [0:P):
Output[p] += Weight[r] * Input[p+r];

Conv1D

P

Weights

Inputs

Outputs

R

W=P+R-1

Think about:To represent this… And write:

problem:
shape:
name: Conv1D
dimensions: [R, P]
data-spaces:
- name: Weights
projection:
- [[R]]

- name: Inputs
projection:
- [[P], [R]]

- name: Outputs
projection:
- [[P]]
read-write: True

instance:
R: 3
P: 16

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces
P
ro

je
c
ti

o
n

Outputs

24

EXERCISE 0: ARCHITECTURE
1-Level Temporal

Buffer

X

PE

To represent this… Write:

architecture:
subtree:

- name: PE
local:
- name: Buffer

class: SRAM
attributes:
entries: 64
instances: 1
word-bits: 8

- name: MACC
class: intmac
attributes:

word-bits: 8

25

EXERCISE 0

Follow the instructions in the README.

26

EXERCISE 1: ARCHITECTURE
2-Level Temporal

Main Memory

Buffer

X

PE

To represent this… Write:

arch:
subtree:
- name: System
local:
- name: MainMemory
class: DRAM
attributes:
word-bits: 8

subtree:
- name: PE
local:
- name: Buffer
class: SRAM
attributes:
entries: 64
instances: 1
word-bits: 8

- name: MACC
class: intmac
attributes:
word-bits: 8

System

27

EXERCISE 1: MAPPING
Weight Stationary

To represent this… Write:

mapping:
- target: MainMemory
type: temporal
factors: R=3 P=1
permutation: RP # inner to outer

- target: Buffer
type: temporal
factors: R=1 P=16
permutation: PR # inner to outer

for p1 in [0:1)
for r1 in [0:3)

for r0 in [0:1)
for p0 in [0:16)
Output[p] += Weight[r] * Input[p+r];

Buffer

Metric Weights Inputs Outputs

Buffer utilization 1 P P

MainMemory Accesses R W P

Buffer accesses PR PR 2PR

Expected outputs

28

EXERCISE 1: MAPPING
Output Stationary

To represent this… Write:

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16
permutation: PR

- target: Buffer
type: temporal
factors: R=3 P=1
permutation: RP

Buffer

Metric Weights Inputs Outputs

Buffer utilization R R 1

MainMemory Accesses R W P

Buffer accesses PR PR 2PR

Expected outputs

for r1 in [0:1)
for p1 in [0:16)

for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

29

EXERCISE 1

Follow the directions in the README.

30

EXERCISE 2: PROBLEM

for k = [0:K)
for r = [0:R):
for p = [0:P):
Output[k][p] += Weight[k][r] * Input[p+r];

Conv1D + Output Channels

P

Weights

Inputs

Outputs

R

W=P+R-1

Think about:To represent this… And write:

problem:
shape:
name: Conv1D
dimensions: [K, R, P]
data-spaces:
- name: Weights
projection:
- [[K]]
- [[R]]

- name: Inputs
projection:
- [[P], [R]]

- name: Outputs
projection:
- [[K]]
- [[P]]
read-write: True

instance:
K: 32
R: 3
P: 16

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces
P
ro

je
c
ti

o
n

Outputs

K

K

31

EXERCISE 2: MAPPINGS
Untiled vs. K-tiled

Untiled mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16 K=32
permutation: RPK

- target: Buffer
type: temporal
factors: R=3 P=1 K=1
permutation: RPK

for k1 in [0:32)
for p1 in [0:16)
for r1 in [0:1)

for k0 in [0:1)
for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

Buffer

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16 K=16
permutation: RPK

- target: Buffer
type: temporal
factors: R=3 P=1 K=2
permutation: RPK

for k1 in [0:16)
for p1 in [0:16)
for r1 in [0:1)

for k0 in [0:2)
for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

Buffer

K-tiled

32

EXERCISE 2

Follow the directions in the README.

33

EXERCISE 2: O.S. DATAFLOW VARIANTS
RWeights W = P+R-1Inputs POutputs

* =

K K

Weights Inputs Outputs

R R 1

R R 1

R W 1

KR R 1

KbR R 1

R R+Pb-1 1

Buffer Utilization
(= minimum Buffer size)

Weights Inputs Outputs

KR KW KP

KPR W KP

KR W KP

KR W KP

KR (K/Kb)W KP

K(P/Pb)R W KP

Backing Store Accesses

Weights Inputs Outputs

KR W KP

Alg. Min. Backing Store Accesses

ሧ

𝑘=1

𝐾

ሧ

𝑝=1

𝑃

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

ሧ

𝑝=1

𝑃

ሧ

𝑘=1

𝐾

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

ሧ

𝑘1=1

𝐾1

ሧ

𝑝=1

𝑃

ሧ

𝑘0=1

𝐾0

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

where 𝐾 = 𝐾1 × 𝐾0 and 𝑘 = 𝑘1𝐾0 + 𝑘0

ሧ

𝑝1=1

𝑃1

ሧ

𝑘=1

𝐾

ሧ

𝑝0=1

𝑃0

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

where 𝑃 = 𝑃1 × 𝑃0 and 𝑝 = 𝑝1𝑃0 + 𝑝0

34

EXERCISE 3: ARCHITECTURE
3-Level Temporal

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

35

EXERCISE 3B: BYPASSING LEVELS
3-Level Temporal with Level Bypassing

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Weights Inputs Outputs

Weights Inputs

Outputs

mapping:

...

- target: GlobalBuffer
type: bypass
keep:
- Weights # same as default
- Inputs # same as default
bypass:
- Outputs # override

- target: RegisterFile
type: bypass
keep:
- Outputs # same as default
bypass:
- Weights # override
- Inputs # override

36

EXERCISE 3B: BYPASSING

Bypassing

• Avoids energy cost of reading and writing buffers

• May result in additional accesses to outer buffers

• Does not change energy cost of moving data over network wires

For brevity in expressing mappings, Timeloop’s evaluator assumes each datatype is stored at each level.

• We will see later that Timeloop’s mapper makes no such assumption

Follow the directions in the README.

Challenge

• Experiment with bypass strategies to find out if there’s any benefit in bypassing for this problem.

37

EXERCISE 4: SPATIAL INSTANCES
3-Level with multiple PEs

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

RegisterFile

X

PE

RegisterFile

X

PE

…

38

EXERCISE 4: MAPPING
Spatial levels need loops too

To represent this…
Write:

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=1 K=1
permutation: PRK

- target: GlobalBuffer
type: temporal
factors: R=3 P=1 K=2
permutation: PRK

- target: GlobalBuffer
type: spatial
factors: R=1 P=1 K=16
permutation: PRK

- target: RegisterFile
type: temporal
factors: R=1 P=16 K=1
permutation: PRK

for k3 in [0:1)
for r3 in [0:1)
for p3 in [0:1)

for k2 in [0:2)
for r2 in [0:3)
for p2 in [0:1)

spatial_for k1 in [0:16)
spatial_for r1 in [0:1)
spatial_for p1 in [0:1)

for k0 in [0:1)
for r0 in [0:1)
for p0 in [0:16)

RegisterFile

MainMemory

GlobalBuffer

Spatial: GlobalBuffer 
RegiserFile

39

EXERCISE 4

Follow the directions in the README.

41

FUN WITH TIMELOOP

THE MAPPER

42

THE MAPPER

ACCELERGY

43

EXERCISE 5: ARCHITECTURE
3-Level Temporal

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

44

EXERCISE 5: MAPSPACE CONSTRAINTS

Retain old “mapping” directives, now treat them as mapspace constraints.

Does this set of constraints result in only 1 legal mapping?

• No! Bypass options haven’t been set. If you fire the model directly on the
mapping, it assumes no bypass. But if you fire the mapper on these constraints, it
recognizes that bypass has been left unspecified and explores all options.

• Each of 3 dataspaces may either be kept or bypassed at each of the 2 inner levels
(RegisterFile and GlobalBuffer) => (2^2)^3 = 64 choices!

Run Timeloop. Does it find a better bypassing strategy?

Comment out all the factors and permutations, comment out the num-threads
parameter and re-run Timeloop. Does it find a better mapping?

45

EXERCISE 5

Follow the directions in the README.

46

EXERCISE 6: PROBLEM

for r = [0:R):
for s = [0:S):
for p = [0:P):
for q = [0:Q):
for c = [0:C):
for k = [0:K):
for n = [0:N):
Output[n][k][q][p] +=

Weight[c][k][r][s] *
Input[n][c]

[q*Hstride+s*Hdilation]
[p*Wstride+r*Wdilation];

Convolutional Network Layer

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

problem:
shape:
name: CNNLayer
dimensions:
- C
- K
- R
- S
- P
- Q
- N

coefficients:
- name: Wstride
default: 1

- name: Hstride
default: 1

- name: Wdilation
default: 1

- name: Hdilation
default: 1

data-spaces:
- name: Weights
projection:
- [[C]],
- [[K]],
- [[R]],
- [[S]]

- name: Inputs
projection:
- [[N]]
- [[C]]
- [[S, Hdilation], [Q, Hstride]]
- [[R, Wdilation], [P, Wstride]]

- name: Outputs
projection:
- [[N]]
- [[K]]
- [[Q]]
- [[P]]
read-write: True

47

EXERCISE 6: ARCHITECTURE
Eyeriss-256

DRAM

System

GlobalBuffer

Eyeriss

…

InputRegFile

X

PE

PsumRegFile

WeightRegFile

InputRegFile

X

PE

PsumRegFile

WeightRegFile

InputRegFile

X

PE

PsumRegFile

WeightRegFile

48

EXERCISE 6: CNN LAYER ON EYERISS-256

Mapper is multi-threaded.

• Mapspace is split between each mapper thread.

• Default number of threads = number of logical CPUs on host machine.

For long mapper runs, you can use the interactive ncurses-based status tracker by
setting mapper.live-status = True

• Tracks various statistics for each mapper thread:

• Best energy-efficiency/performance seen so far

• Number of legal/illegal/total mappings examined so far

• Number of consecutive illegal mappings

• Number of consecutive legal sub-optimal mappings

49

EXERCISE 6: TUNING THE MAPPER’S SEARCH

Termination conditions

1. Mapspace exhausted

2. #Valid mappings encountered >= “search-size”

3. #Consecutive invalid mappings encountered >= “timeout”

4. #Consecutive sub-optimal valid mappings encountered >= “victory-condition”

5. Ctrl+C

50

EXERCISE 6

Follow the directions in the README.

51

DEEP DIVE:
UNDERSTANDING THE

MAPPER

52

CANONICAL MAPPING REPRESENTATION

// === Mapping ===
// Main Memory
for r3=[0:R3):

for p3=[0:P3):

// Buffer
for r2=[0:R2):

for p2=[0:P2):

// Spatial: GBuf->RFile
parallel_for r1=[0:R1):
parallel_for p1=[0:P1):

// RFile
for r0=[0:R0):

for p0=[0:P0):
p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
Output[p] += Weight[r] * Input[r+p];

Mapping: way in which the operation space and the associated data spaces are split into tiles at
each level of the architecture’s hierarchy and among multiple instances at each level

Tiling Level 0

Tiling Level 1

Tiling Level 2

Tiling Level 3

Split into tiling levels:
• R0*R1*R2*R3 = R
• P0*P1*P2*P3 = P

// === 1D Convolution Workload ===
for r=[0:R):
for p=[0:P):
Output[p] += Weight[r] * Input[r+p];

DRAM

GBuf

RFile RFile RFile RFile

X XX X

Sample Architecture

0 1 2 3

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7
8 9 A B
C D E F

R

P

53

MAPSPACES
Set of legal mappings of a workload onto an architecture

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

// === 1D Convolution Workload ===
for r=[0:R):

for p=[0:P):
Output[p] += Weight[r] * Input[r+p];

// === Mapping ===
// DRAM
for r3=[0:R3):

for p3=[0:P3):

// GBuf
for r2=[0:R2):

for p2=[0:P2):

// Spatial: GBuf->RFile
parallel_for r1=[0:R1):
parallel_for p1=[0:P1):

// RFile
for r0=[0:R0):

for p0=[0:P0):
p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
Output[p] += Weight[r] * Input[r+p];

54

MAPSPACE CONSTRAINTS

// === 1D Convolution Workload ===
for r=[0:R):

for p=[0:P):
Output[p] += Weight[r] * Input[r+p];

// === Mapping ===
// DRAM
for r3=[0:R3):

for p3=[0:P3):

// GBuf
for r2=[0:R2):

for p2=[0:P2):

// Spatial: GBuf->RFile
parallel_for r1=[0:R1):
parallel_for p1=[0:P1):

// RFile
for r0=[0:3):

for p0=[0:P0):
p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
Output[p] += Weight[r] * Input[r+p];

Index Factorization and Loop Permutation

target = "RFile";

factors = "R=3";

permutation = “PR”;

• Note that P is a free variable. Timeloop will
automatically choose an optimal P and will know not
to exceed the capacity of the buffer at this level.

• Inequalities are allowed, e.g., P<=16.

• Permutations can be partially specified.

55

MAPSPACE CONSTRAINTS

W/I

…

Accum Buffer

Weight/Input

bypassed

Weight-Input Buffer

Outputs bypassed
A

A W/I A W/I

DRAM

Multipliers

X XX X

A W/I

X XX X X XX X

target = “Weight-Input Buffer";

keep = [“Weights”];

bypass = [“Outputs”];

Buffer Level Bypassing

56

CONSTRAINING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrain

57

PRUNING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrain

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Illegal (tiles won’t fit)

Superfluous
(permutations
of unit-factors)

58

PRUNING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrain Prune

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Illegal (tiles won’t fit)

Superfluous
(permutations
of unit-factors)

Index Factorization

Pruned,
constrained
mapspace

59

THE MAPPER

Pruned,

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
nMapper

Model

Heuristic Search

• Linear

• Random

• Hybrid

60

MULTI-THREADING

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Mapper

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

M
a
p
sp

a
c
e

0

M
a
p
sp

a
c
e

1

M
a
p
sp

a
c
e

2

M
a
p
sp

a
c
e

3

Search 0
Search 1

Search 2
Search 3

Thread 0
Thread 1

Thread 2
Thread 3

Model 0
Model 1

Model 2
Model 3

Can also split along other dimensions

61

DEEP DIVE:
UNDERSTANDING THE

MODEL

62

THE MODEL

ACCELERGY

63

THE MODEL: TILE ANALYSIS
Mapping

tile i

tile i+1

delta

Deltas: set-difference between point sets

• Temporal: Indicates stationarity, sliding-
window behavior, etc.

• Spatial: Indicates overlaps/halos between
adjacent units, multicasting/forwarding
opportunities

Determines
tiles, spatial
partitioning of
tiles, and
schedule

Point sets: at each loop iteration (time step OR instance of a hardware unit)

Tile Analysis: Measure and
record deltas over all space
and time.

Naïve but robust approach:
simulate execution of entire
loop nest.

Regular problems:
• Compute 1st, 2nd, and last

iterations of each loop
• Point sets are Axis-Aligned

Hyper Rectangles (AAHR)

for …
for p=[0:8)
for …
for …

64

THE MODEL: UARCH MODEL

W/I

…
Accum Buffer

Weight/Input

Global Buffer

A A

DRAM

Multipliers

X XX X

A

X XX X X XX X

For each dataspace:

• Tile Accesses

• Multicast/Distribution

Patterns

• Recipient stats

L3

L2

L1

Arithmetic

From Tile Analysis

• Multiplier accesses

• Buffer accesses

• Network transfers

• Temporal and spatial accumulations

• Address-generator invocations

Derive

65

ESTIMATING PERFORMANCE AND ENERGY

W/I

…
Accum Buffer

Weight/Input

Global Buffer

A A

DRAM

Multipliers

X XX X

A

X XX X X XX X

Performance: Throughput of

rate-limiting step across:

• Multipliers

• Buffer read/write ports

• Networks

Assumption: Buffers are either

double-buffered or use buffets*

Energy: summation of costs for

various activities:

• Multiplier accesses

• Buffer accesses

• Network transfers

• Temporal and spatial

accumulations

• Address-generator invocations

* Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration; Michael Pellauer, Yakun Sophia Shao, Jason
Clemons, Neal Crago, Kartik Hegde, Rangarajan Venkatesan, Stephen W. Keckler, Christopher W Fletcher, Joel Emer; ASPLOS 2019

What are the per-activity costs?

66

FUTURE WORK

Search Heuristics

Workloads: Complete networks, with inter-layer optimization

Modeling fragmentation and load imbalance in architectures that exploit
unstructured sparsity for performance

67

TIMELOOP

Timeloop aims to serve as a vehicle for quality research on flexible DNN accelerator architectures.
The infrastructure is released at https://github.com/NVlabs/timeloop under a BSD license.

Please join us in making Timeloop better and more useful for research opportunities across the
community.

ACCELERGY

https://github.com/NVlabs/timeloop

69

BACKUP

70

DNN ACCELERATORS

Arithmetic

Design Considerations

DRAM
On-chip

Buffer

Register

File *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Register

File

Register

File

Register

File

Data Movement

71

BUFFER PARAMETERS

Spatial instances = 6
• Spatial fanout of 6 from the next-outer level.
• Can receive multicasts and produce partial

sums for spatial reduction)

word-size = 32b

Temporal capacity = 16 * 32b words
• Per instance
• Counted in terms of scalar words
• Used to fit temporal tiles

depth = 8

block-size = 2

cluster-size = 3

width = 192b

72

CASE STUDY: BENCHMARK SWEEP

73

ARCHITECTURE SPECIFICATION: EXAMPLE

DRAM

8b

8 entries

8b

16384 entries

storage =

(

{

name = “Local";

entries = 8;

instances = 4;

word-bits = 8;

meshX = 2;

meshY = 2;uster-size = 2;

},

{

name = “Global";

sizeKB = 16; // => entries = 16384

instances = 1;

word-bits = 8; = 4;

},

{

name = “MainMemory”;

technology = “DRAM”;

instances = 1;; // bytes per core-clock

}

)

L0

L1

L2

Several other configuration

parameters:

• Aspect ratios/vectorization

• Banks, ports

• Read/write bandwidths

• Network bandwidth

74

MAPPINGS

// === Mapping ===
// DRAM
for r3=[0:R3):

for p3=[0:P3):

// GBuf
for r2=[0:R2):

for p2=[0:P2):

// Spatial: GBuf->RFile
parallel_for r1=[0:R1):
parallel_for p1=[0:P1):

// RFile
for r0=[0:R0):

for p0=[0:P0):
p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
Output[p] += Weight[r] * Input[r+p];

Mapping: way in which the operation space and the associated data spaces are split into tiles at
each level of the architecture’s hierarchy and among multiple instances at each level

Tiling Level 0

Tiling Level 1

Tiling Level 2

Tiling Level 3

Split into tiling levels:
• R0*R1*R2*R3 = R
• P0*P1*P2*P3 = P

// === 1D Convolution Workload ===
for r=[0:R):
for p=[0:P):
Output[p] += Weight[r] * Input[r+p];

DRAM

GBuf

RFile RFile RFile RFile

X XX X

Sample ArchitectureObservations:

• Loop bounds => hierarchically slice up

operation space (and projected

dataspaces) into tiles (inclusive)

• Parallel_for => spatial partitioning across

instances at a level

• Ordering of loops within a level => delivery

sequence of sub-tiles (stationarity)

75

MAPPING CONSTRAINTS

target = "RFile";

type = "temporal";

factors = "Q1 R1 S1 C1 K1 N1";

permutation = “PQRSCKN”;

Note: P is a free variable. Timeloop

will automatically choose an optimal

P and will know not to exceed the

capacity of the buffer at this level.

Factors, Permutation and LevelBypass

target = “GBuf_RFile";

type = "spatial";

factors = "C16 K1 R1 S1 P1 Q1 N1";

target = “RFile";

type = "datatype";

keep = ["Weights"];

bypass = ["Inputs", "Outputs"];

76

BUFFER MODEL

DOUBLE-BUFFERING BUFFETS

Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration; Michael Pellauer, Yakun Sophia Shao, Jason
Clemons, Neal Crago, Kartik Hegde, Rangarajan Venkatesan, Stephen W. Keckler, Christopher W Fletcher, Joel Emer; ASPLOS 2019

Back Buffer

Front Buffer

Fill

Read

Fill

Read

• Fine-grained pre-
buffering of Fills

• Implicit support for
sliding windows

• Fine-grained
synchronization
between various
operations,
including Fill->Read

77

CASE STUDY:AREA VS. ENERGY

78

PROBLEM SPECIFICATION

for r = [0:R):
for s = [0:S):
for p = [0:P):
for q = [0:Q):
for c = [0:C):
for k = [0:K):
for n = [0:N):
Output[p][q][k][n] +=

Weight[r][s][k][c] *
Input[p+r][q+s][c][n];

Deep Loop Nest

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

Weights

Inputs

R

W=P+R-1

Operation Space

Data Spaces

Provided to Timeloop Inferred by Timeloop

P
ro

je
c
ti

o
n

79

PROBLEM SPECIFICATION

for r = [0:R):
for s = [0:S):

for p = [0:P):
for q = [0:Q):

for c = [0:C):
for k = [0:K):

for n = [0:N):
Output[p][q][k][n] +=

Weight[r][s][k][c] *
Input[p+r][q+s][c][n];

Deep Loop Nest

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

80

ARCHITECTURE SPECIFICATION

Off-chip
storage

Multiple levels

On-chip storage

MAC
Unit

Compute elems

Intra-level

Inter-level

On-chip links

Several other configuration

parameters:

• Aspect ratios/vectorization

• Banks, ports

• Read/write bandwidths

• Network bandwidth

81

MAPPINGS

// === Mapping ===
// DRAM
for r3=[0:R3):

for p3=[0:P3):

// GBuf
for r2=[0:R2):

for p2=[0:P2):

// Spatial: GBuf->RFile
parallel_for r1=[0:R1):
parallel_for p1=[0:P1):

// RFile
for r0=[0:R0):

for p0=[0:P0):
p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
Output[p] += Weight[r] * Input[r+p];

Mapping: way in which the operation space and the associated data spaces are split into tiles at
each level of the architecture’s hierarchy and among multiple instances at each level

Tiling Level 0

Tiling Level 1

Tiling Level 2

Tiling Level 3

Split into tiling levels:
• R0*R1*R2*R3 = R
• P0*P1*P2*P3 = P

// === 1D Convolution Workload ===
for r=[0:R):
for p=[0:P):
Output[p] += Weight[r] * Input[r+p];

DRAM

GBuf

RFile RFile RFile RFile

X XX X

Sample Architecture

0 1 2 3

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7
8 9 A B
C D E F

R

P

82

EXERCISE 6: PROBLEM

for r = [0:R):
for s = [0:S):
for p = [0:P):
for q = [0:Q):
for c = [0:C):
for k = [0:K):
for n = [0:N):
Output[p][q][k][n] +=

Weight[r][s][k][c] *
Input[p+r][q+s][c][n];

7D Convolutional Network Layer

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces

Think about:To represent this…

P
ro

je
c
ti

o
n

And write:

problem:
shape:
name: Conv7D
dimensions: [C, K, R, S, P, Q, N]
data-spaces:
- name: Weights
projection: [C, K, R, S]

- name: Inputs
projection:
- [[N]]
- [[C]]
- [[Q], [S]]
- [[P], [R]]

- name: Outputs
projection: [N, K, Q, P]
read-write: True

R: 3
P: 1920

Outputs

83

MAPPINGS

// === Mapping ===
// Main Memory
for r3=[0:R3):

for p3=[0:P3):

// Buffer
for r2=[0:R2):

for p2=[0:P2):

// Spatial: GBuf->RFile
parallel_for r1=[0:R1):
parallel_for p1=[0:P1):

// RFile
for r0=[0:R0):

for p0=[0:P0):
p = p3*P2*P1*P0 + p2*P1*P0 + p1*P0 + p0;
r = r3*R2*R1*R0 + r2*R1*R0 + r1*R0 + r0;
Output[p] += Weight[r] * Input[r+p];

Mapping: way in which the operation space and the associated data spaces are split into tiles at
each level of the architecture’s hierarchy and among multiple instances at each level

Tiling Level 0

Tiling Level 1

Tiling Level 2

Tiling Level 3

Split into tiling levels:
• R0*R1*R2*R3 = R
• P0*P1*P2*P3 = P

// === 1D Convolution Workload ===
for r=[0:R):
for p=[0:P):
Output[p] += Weight[r] * Input[r+p];

DRAM

GBuf

RFile RFile RFile RFile

X XX X

Sample Architecture

0 1 2 3

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7
8 9 A B
C D E F

R

P

84

MULTIPLE TOOLS WITHIN TIMELOOP

Metrics
• Energy-per-access

• Area
Arch Spec

Arch Spec

Workload Spec

Mapping

Evaluator

Perf

Energy

Area

Arch Spec

Workload Spec Mapper Perf

Energy

Area

Opt Mapping

Search Params

85

THE MAPPER

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Model

Search

Next()

mappingID

mapping

Evaluate()

Success.cost | Fail

Report()

Mapper (main())

• Linear

• Random

• Hybrid

valid
mapping

invalid
mapping

• Update best
• Update stats
• Check

termination
conditions

86

MAPPER TERMINATION CONDITIONS

Mapper termination conditions

1. Mapspace exhausted

2. #Valid mappings encountered >= “search-size”

3. #Consecutive invalid mappings encountered >= “timeout”

4. #Consecutive sub-optimal valid mappings encountered >= “victory-condition”

5. Ctrl+C

87

ALTERNATE INTRO

88

EVALUATING ARCHITECTURES

C++

Application
Binary

Trace

Partially tuned
to target

architecture

Problem

Spec

e.g., LZ77

ISATraditional architectures

Optimizing

Compiler

Hardware

Model

Architecture
Research

89

EVALUATING ARCHITECTURES

C++

Application
Binary

Trace

Partially tuned
to target

architecture

Problem

Spec

e.g., DNN Layer
7D Loop Nest

Problem

Spec

e.g., LZ77

ISATraditional architectures

Flexible accelerator architectures

Troll Programmer Photo by Unknown

Author is licensed under CC BY-SA

Optimizing

Compiler

Hardware

Model

Hardware

Model

Architecture
Research

??? ???

http://codegolf.stackexchange.com/questions/23614/trolling-the-troll
https://creativecommons.org/licenses/by-sa/3.0/

90

EVALUATING ARCHITECTURES

C++

Application
Binary

Trace

Partially tuned
to target

architecture

Problem

Spec

e.g., DNN Layer
7D Loop Nest

Problem

Spec

e.g., LZ77

ISATraditional architectures

Flexible accelerator architectures

Troll Programmer Photo by Unknown

Author is licensed under CC BY-SA

Optimizing

Compiler

Hardware

Model

Model

Architecture
Research

Mapper Mapping

A model needs a mapper

http://codegolf.stackexchange.com/questions/23614/trolling-the-troll
https://creativecommons.org/licenses/by-sa/3.0/

