
Sparseloop: An Analytical, Energy-Focused
Design Space Exploration Methodology

for Sparse Tensor Accelerators

Yannan Nellie Wu
MIT

Cambridge, US

nelliewu@mit.edu

Po-An Tsai
NVIDIA

Westford, US

poant@nvidia.com

Angshuman Parashar
NVIDIA

Westford, US

aparashar@nvidia.com

Vivienne Sze
MIT

Cambridge, US

sze@mit.edu

Joel S. Emer
MIT / NVIDIA

Cambridge, US

emer@csail.mit.edu

Abstract—This paper presents Sparseloop, the first infras-
tructure that implements an analytical design space exploration
methodology for sparse tensor accelerators. Sparseloop compre-
hends a wide set of architecture specifications including various
sparse optimization features such as compressed tensor storage.
Using these specifications, Sparseloop can calculate a design’s
energy efficiency while accounting for both optimization savings
and metadata overhead at each storage and compute level of the
architecture using stochastic tensor density models. We validate
Sparseloop on a well-known accelerator design and achieve
∼99% accuracy in terms of runtime activities (e.g., compressed
memory accesses). We also present a case study that highlights
the key factors (e.g., uncompressed traffic, data density) that
affect sparse optimization features’ impact on energy efficiency.
Tool available at: https://github.com/NVlabs/timeloop.

Index Terms—analytical modeling, sparse tensor accelerators

I. INTRODUCTION

Many popular applications (e.g., deep neural networks [1],

graph algorithms [2]) involve tensor computations (e.g., cross

products) whose operand and result tensors can have sparsity

(i.e., fraction of zeroes) ranging from 10−6% to 100% [3].

Due to the nature of multiplication, zero multiplicands always

result in zero products. Such computations (which are called as

ineffectual) can be exploited by hardware sparse optimization
features to improve energy efficiency and throughput. We clas-

sify these sparse optimization features into three categories:

zero-gating, zero-skipping, and zero-compression. Zero-gating

improves energy efficiency by keeping the associated hardware

components idle for ineffectual computations. Zero-skipping

further improves throughput by skipping cycles where ineffec-

tual computations would have taken place. Zero-compression

reduces required storage by only storing nonzero values.

In recent years, a variety of sparse tensor accelerators [3]–

[12] have been proposed. Based on the designer’s intuitions,

each design applies variations of the aforementioned sparse

optimization features differently to the storage and compute

levels of the architecture. However, these specific designs are

just points in a large and diverse space of sparse tensor acceler-

ators. A fast, flexible, and accurate modeling framework would

enable architects to perform early design space exploration in

the complete space instead of picking specific points based on

Fig. 1. Sparseloop High-Level Framework

intuition. Existing tensor accelerator models are either very

detailed and design-specific [3]–[13], leading to slow and

limited design space exploration, or fast and flexible but unable

to systematically evaluate the impact of sparse optimization

features [14]–[21], resulting in inaccurate modeling. In this

work, we propose Sparseloop, an analytical modeling infras-

tructure for performing fast design space exploration of sparse

accelerators that vary in both (1) properties associated with

sparsity (e.g., compression formats, ineffectual operations’

gating/skipping, and workload attributes), and (2) architecture

properties (e.g., organization of the storage hierarchy). To the

authors’ knowledge, Sparseloop is the first analytical model

that allows systematic evaluation of sparse tensor accelerators.

II. SPARSELOOP HIGH-LEVEL FRAMEWORK

Fig. 1 shows an overview of the Sparseloop framework.

Sparseloop needs the following inputs: (1) an architecture

specification that describes the levels in the architecture (e.g.,
there are two storage levels and one compute level), the com-

ponents in each level (e.g., there are four ALUs in the compute

level), and the components’ hardware attributes (e.g., each

ALU has a data-width of 16 bits), (2) a workload specification

that provides the shape and density for operand and result

tensors (e.g., a DNN’s weight operand tensor has a shape of

3×7×7 and a density of 0.3), (3) a list of sparse optimization

features supported by the architecture (e.g., compute level

supports zero-gating), and (4) a workload mapping (i.e., the

scheduling of data movement and compute in space and time).

232

2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-8643-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPASS51385.2021.00043

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

sis
 o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(IS

PA
SS

) |
 9

78
-1

-7
28

1-
86

43
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
PA

SS
51

38
5.

20
21

.0
00

43

Authorized licensed use limited to: MIT Libraries. Downloaded on May 04,2021 at 16:37:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Component runtime activity validation on SCNN architecture [6].
DRAM: off-chip storage level, WBUF, IARAM, ACCURAM, & OARAM: on-
chip storage levels, Multipliers: compute level.

Given these inputs, Sparseloop evaluates the validity of

the mapping and (for valid mappings) its associated energy

consumption. Since comprehensive modeling of a sparse ar-

chitecture is a complex problem, Sparseloop carefully de-

composes the original intertwined problem into three more

tractable modeling steps: dense modeling, sparse modeling,

and micro-architectural modeling, as shown in Fig. 1. This

clean separation significantly reduces the complexity at each

step and enables easy integration of extensions of different

types. Dense modeling does not consider any sparse optimiza-

tion features and analyzes the dense dataflow described by the

user-specified mapping to derive dense traffic counts, which

include the number of accesses to storage and dense arithmetic

operations. The sparse modeling step adjusts the dense traffic

counts to reflect the impact, i.e., the savings and overhead, of

sparse optimization features. To ensure fast modeling speed

required by analytical modeling, statistical tile density mod-

els are used to derive sparse traffic counts, which include

statistical characteristics of accesses and computes. Finally,

the micro-architectural modeling step refines the sparse traffic

counts based on the micro-architectural details (e.g., bank

access width) and the design’s sparse optimization features.

The final energy consumption is also evaluated at this step.

III. EXPERIMENTAL RESULTS

We integrated our proposed sparse tensor accelerator model-

ing methodology to enhance an existing dense tensor analytical

modeling framework, Timeloop [14]. To accurately capture the

energy consumption of the fine-grained actions introduced by

the sparse optimization features, we used Accelergy [22] as

the energy estimation back-end. We validate Sparseloop on

SCNN [6], a well-known sparse DNN accelerator. We select

several convolutional layers from three DNN networks [23]–

[25] as validation workloads and compare the runtime activi-

ties of the components (e.g., the number of reads and writes

to the storage levels), with the ground truth data generated

by a custom SCNN simulator. Fig. 2 shows that Sparseloop’s

results are 99% accurate for all components in the architecture.

As a case study, we use Sparseloop to explore other potential

designs by applying sparse optimization features based on the

density of different workload tensor(s). We first study the

effect of applying DRAM compression. Shown in Fig. 3(a),

for different the batch sizes (i.e., N) of AlexNet conv4, the

relative input accesses are much smaller when N=1. Thus,

Fig. 3. (a) Uncompressed DRAM traffic breakdown for different layers. (b)
Layer densities N* stands for the batch size of the workload.

Fig. 4. Various optimizations applied to Eyeriss-based [4] topology. baseline
refers to a dense architecture. Other architectures are named based on the
applied sparse optimizations at four levels separated by -: DRAM-GLB-spads-
MACs. Tensors: I: input, W: weight, O: output. Sparse optimizations: U:
uncompressed, C: compressed, NG: no gating, G: zero-gating

Fig. 4 shows that CIO-U-U-NG, i.e., compressing DRAM

based on input and output tensor density, performs worse

for AlexNet conv4 N1. However, compressing the tensors that

dominate the uncompressed DRAM traffic does not necessarily

introduce the most savings, e.g., for layer inception 3a 1x1,

although inputs have almost 2x more uncompressed traffic,

compressing weights introduces more savings as weights

tensor density (46%) is much lower (Fig. 3(b)). We then

study the various ways of applying different zero gating to

scratchpads (spads) and MACs. AlexNet conv4’s results indi-

cate that considering both total uncompressed traffic and the

tensor density is still not sufficient, as larger weight metadata

storage size results in a much larger energy-per-access value

for each weight metadata access. Thus, to comprehensively

compare sparse optimization features, we should consider

uncompressed traffic breakdown across tensors, tensor density,

and architectural details.

IV. CONCLUSION

In this paper, we presented Sparseloop, an infrastructure that

implements a generally applicable methodology for analytical

evaluation of sparse tensor accelerators’ energy efficiency.

To reduce the complexity of comprehensive modeling, we

present a modularized three-step evaluation process for an-

alyzing a sparse tensor accelerator running a given workload,

with sparsity being modeled statistically. We demonstrate

that Sparseloop can achieve high estimation accuracy while

retaining the high speed of analytical modeling, and help

designers to understand the critical factors involved in sparse

tensor architecture evaluation and design.

233

Authorized licensed use limited to: MIT Libraries. Downloaded on May 04,2021 at 16:37:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in OSDI, 2016.

[2] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos,
J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson,
A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo, “Standards for graph algorithm primitives,”
in HPEC, 2013.

[3] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. S. Emer, and C. Fletcher, “ExTensor: An accelerator
for sparse tensor algebra,” in MICRO, 2019.

[4] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” in ISSCC, 2016.

[5] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2019.

[6] A. Parashar, M. Rhu, A. M. asnd A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,” in
ISCA, 2017.

[7] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
MICRO, 2016.

[8] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ISCA, 2016.

[9] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 26th IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020.

[10] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in MICRO, 2020.

[11] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace: An
outer product based sparse matrix multiplication accelerator,” in HPCA,
2018.

[12] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in HPCA, 2020,
pp. 58–70.

[13] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the
energy consumption of deep neural networks,” in Asilomar, 2017.

[14] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
Systematic Approach to DNN Accelerator Evaluation,” in ISPASS, 2019.

[15] Y. N. Wu, V. Sze, and J. S. Emer, “An architecture-level energy and area
estimator for processing-in-memory accelerator designs,” in ISPASS,
2020.

[16] A. Samajdar, J. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A Systematic Methodology for Characterizing Scalability
of DNN Accelerators using SCALE-Sim,” in ISPASS, 2020.

[17] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “Maestro: A data-centric approach to understand reuse,
performance, and hardware cost of dnn mappings,” IEEE Micro, vol. 40,
no. 3, pp. 20–29, 2020.

[18] L. Ke, X. He, and X. Zhang, “Nnest: Early-stage design space explo-
ration tool for neural network inference accelerators,” in ISLPED, 2018.

[19] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “DNN-Chip
Predictor: An analytical performance predictor for dnn accelerators with
various dataflows and hardware architectures,” in ICASSP, 2020.

[20] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and M. Lis,
“Procrustes: a dataflow and accelerator for sparse deep neural network
training,” in MICRO, 2020.

[21] N. Corp., “NVIDIA A100 Tensor Core GPU Architecture,” Tech. Rep.,
2020.

[22] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-level
energy estimation methodology for accelerator designs,” in ICCAD,
2019.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” 2015.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

234

Authorized licensed use limited to: MIT Libraries. Downloaded on May 04,2021 at 16:37:53 UTC from IEEE Xplore. Restrictions apply.

