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Abstract—Due to the data and computation intensive nature
of many popular data processing applications, e.g., deep neural
networks (DNNs), a variety of accelerators have been proposed
to improve performance and energy efficiency. As a result,
computing systems have become increasingly heterogeneous,
with application-specific processing offloaded from the CPU to
specialized accelerators. To understand the energy efficiency
of such systems, it is desirable to characterize holistically the
energy consumption of the CPU, the accelerator, and the data
transfers in between. We present a modularized architecture-
level energy estimation framework that captures the energy
breakdown across the various CPU and accelerator components
with a unified energy estimation back-end that allows easy
integration of accelerator modeling frameworks for emerging
designs. Using DNN workloads as examples, we show that CPU-
end preprocessing and data transfers to and from the accelerator
can account for up to 45-50% of total energy when assessing
the system as a whole. Related open-source code is available at
https://accelergy.mit.edu.

Index Terms—Architecture-Level Estimation, SoC Energy Es-
timation, Deep Neural Network Accelerators

I. INTRODUCTION

Many popular workloads, such as deep neural networks

(DNNs) and graph algorithms, are computation heavy and

have well defined memory access patterns with abundant data

reuse. This makes them attractive candidates for hardware ac-

celeration [1]–[5]. When processing such workloads, system-

on-chip (SoC) platforms often offload the computation and

memory intensive portions (e.g., the convolutional and fully

connected layers of a DNN) to specialized accelerators, which

can achieve higher performance and energy efficiency than the

CPU. It is important for designers to have a holistic under-

standing of the entire heterogeneous system by considering the

energy expended by the CPU, the domain-specific accelerator,

and the data transfer in between. There are existing works

that provide early stage architecture-level energy estimations

for such heterogeneous systems [6]–[8]. However, they either

assume a simplified CPU-end setup for a limited class of

workloads (e.g., DNNs coded in TensorFlow [8]), and/or

limited accelerator modeling capabilities (e.g., hard-coded

mapping search for a fixed accelerator architecture or limited

hardware energy characterizations [6]–[8]). To address this

problem, we propose a modularized evaluation framework that

supports the modeling of heterogeneous systems for arbitrary

classes of workloads, including new and upcoming application

domains. The framework enables interactions between three

existing evaluation frameworks, Gem5 [9], Timeloop [10], and

Fig. 1: High-level infrastructure with runtime activity mod-

eling frameworks and a unified energy estimation back-end

Accelergy [11]. Extensions to existing frameworks are shaded.

Detailed Gem5-Accelergy setup shown in Figure 3. Detailed

Timeloop-Accelergy setup similar to [12].

Fig. 2: High-level illustration of how a simple CPU-accelerator

system can be evaluated with the setup in Figure 1.

Accelergy [11], each providing comprehensive modeling of its

target platform.

II. ESTIMATION FRAMEWORK

Figure 1 shows the high level organization of the esti-

mation framework. Gem5 [9] is used to model the CPU,

Timeloop [10], [13] is used as an example of an accel-

erator modelling framework, and Accelergy [11] serves as

a unified energy estimation back-end. Accelergy is able to

support energy estimation plug-ins from various sources, each

responsible for different components of the system. Figure 2

shows how a simple CPU-accelerator system can be evaluated

with the proposed setup.

The Gem5-Accelergy setup is shown in Figure 3. We

use the Gem5 simulator in full system mode to model the

micro-architectural activity of CPU workloads. This allows

us to characterize arbitrary CPU programs and takes into

account the overhead of the operating system and system calls.
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Fig. 3: Gem5-Accelergy setup for CPU energy estimation.

Extensions to existing frameworks are shaded.

Gem5 generates the runtime activity counts for the various

components (e.g., caches, the reorder buffer, and various

ALU units). It also outputs an architectural description of the

organization of the high-level components and their associated

hardware attributes (e.g., buffer sizes, bus widths). To support

interactions between Gem5 and Accelergy, we implemented

the gem5-accelergy connector which converts gem5 outputs to

Accelergy-style architectural descriptions and activity counts.

To describe the high-level components in the CPU archi-

tectures, we created a library of YAML-based component

descriptions. These can be easily updated if the user would

like to add or modify components. For CPU component energy

estimations, we created an energy estimation plug-in based on

McPAT [14] to determine the energy cost of microarchitectural

activities (e.g., an instruction fetch). Timeloop allows us to

model the energy consumption of tensor accelerators (e.g.,
GEMM and DNN accelerators) by performing an extensive

mapping space search. More details on the Timeloop and

Timeloop-Accelergy interactions can be found in [10] and

[12]. Note that although we use Timeloop as an example

accelerator modeling framework, different frameworks can

easily be plugged in to replace Timeloop to model other

accelerator designs for different application domains.

III. EXPERIMENTAL RESULTS

We validated the Gem5-Accelergy system on [15]. As

shown in Figure 4, both the total energy consumption and the

component energy breakdowns closely match with the ground

truth. Next, we performed a case study to evaluate the energy

consumption of DNN inference workloads (AlexNet [16] and

ResNet-18 [17]) on a heterogeneous system that consists of an

out-of-order CPU core and the DNN accelerator Eyeriss [1].

Specifically, data preprocessing (i.e., normalizing the input

image) and pooling layers are performed with PyTorch on

the CPU while convolutional and fully-connected layers are

performed on Eyeriss. Data is transferred between the CPU

and the accelerator by reading and writing from the DRAM.

Figure 5 shows the energy breakdown by layer type in the

case where all of the computations are done on the CPU

Fig. 4: Gem5-Accelergy energy estimation validation on var-

ious workloads.

Fig. 5: Energy breakdown for CPU-only and CPU-Accelerator

workloads for AlexNet and ResNet-18. We use Eyeriss [1] as

the accelerator design. Total energy consumption is labeled at

the top of each bar.

and when computations are offloaded to the accelerator. As

the accelerator is much more energy efficient than the CPU,

components of energy consumption that once were dwarfed

by the convolutional layers such as data preprocessing and

pooling now become significant. The energy cost of data

transfers through the DRAM is only present when offloading

to the accelerator. This also consumes a significant portion

of total energy. In both cases, processing of the convolutional

and fully connected layers only consumes about a third of total

energy, down from about 97%.

IV. CONCLUSION

This work presents a generally applicable architecture-level

energy estimation framework to understand the component

energy breakdowns in heterogeneous computing systems. The

unified energy estimation back-end and modularity of the

framework allows easy integration of various accelerator mod-

eling frameworks. This framework is well suited to modeling

use cases where some parts of the workload are offloaded

to an accelerator while other parts remain on the CPU. With

our DNN case study, we have shown that it is insufficient to

look at just the energy consumption of the accelerator. Even if

most of the computation is offloaded to the accelerator, CPU

processing and data transfers contribute significantly to total

system energy and should be taken into account in a holistic

evaluation of the SoC.
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