
1

Accelergy

Timeloop

Angshuman Parashar NVIDIA

Yannan Nellie Wu MIT

Po-An Tsai NVIDIA

Vivienne Sze MIT

Joel S. Emer NVIDIA, MIT

ISPASS Tutorial
Part 1: Technical Background

August 2020

2

Resources

• Tutorial Website: https://accelergy.mit.edu/tutorial.html

Includes infrastructure download and installation instructions

• Open Source Tools

– Accelergy: http://accelergy.mit.edu/

– Timeloop: https://github.com/NVlabs/timeloop

• Papers:

– A. Parashar, et al. "Timeloop: A systematic approach to DNN accelerator evaluation," ISPASS, 2019.

– Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” ISPASS,

2020.

– Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” ICCAD, 2019.

https://accelergy.mit.edu/tutorial.html
http://accelergy.mit.edu/
https://github.com/NVlabs/timeloop

3

MOTIVATION

4

DNN ACCELERATORS

Arithmetic

Design Considerations

Data Movement

DRAM

Register

File *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Register

File

Register

File

Register

File* * * *

On-chip

Buffer

5

DNN ACCELERATORS

Arithmetic

Design Considerations

Data Movement

DRAM

Register

File *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Register

File

Register

File

Register

File* * * *

On-chip

Buffer

6

DATA MOVEMENT

Why it’s important

VGG16 conv 3_2

Multiply Add Ops 1.85 Billion

Weights 590 K

Inputs 803 K

Outputs 803 K

Energy costs

8-bit Integer Multiply 0.2 pJ

Fetch two 8-bit operands from DRAM 128 pJ

Fetch two 8-bit operands from large SRAM 2 pJ

Fortunately…
Re-use

7

EXPLOITING REUSE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

2D hardware array7-dimensional network layer

Convolutional Reuse
• Slide filter over input plane
Input Activation Reuse
• Multiple filter blocks over same inputs
Output Activation Reuse
• Accumulation sum over channels
Batch Reuse
• Re-apply filters to new inputs

DRAM Buf RF *Temporal

Multicast Forwarding

Algorithmic

Reuse

map

Hardware

Reuse

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

Flexible architectures may allow millions of alternative mappings of a single workload

8

MAPPING CHOICES

480,000 mappings shown

Spread: 19x in energy efficiency

Only 1 is optimal, 9 others within 1%

Energy-efficiency of peak-perf mappings of a single problem

A mapper needs a good cost model to find
an optimal mapping

A model needs a mapper to evaluate a
DNN workload on an architecture

6,582 mappings have min. DRAM accesses
but vary 11x in energy efficiency

9

TIMELOOP / ACCELERGY
Tools for Evaluation and Architectural Design-Space Exploration of DNN Accelerators

Model variety of DNN acceleratorsTarget every architecture supported by Model

ACCELERGY

10

WHY TIMELOOP/ACCELERGY?

Microarchitectural model (Timeloop/Accelergy)

• Expressive: generic, template based hardware model

• Fast: faster than native execution on host CPUs

• Accurate: validated vs. design-specific models

Technology model (Accelergy)

• Allows user-defined complex architectural components

• Plugins for various technology models, e.g., Cacti, Aladdin, proprietary databases

Built-in Mapper (Timeloop)

• Addresses the hard problem of optimizing data reuse, which is required for faithful

evaluation of a workload on an architecture

11

TIMELOOP VALIDATION

12

VALIDATION: EYERISS
Vs. ISCA 2016 Eyeriss Energy Model

Reference Timeloop

13

VALIDATION: SIMBA PE (ENERGY)

Within 8% error across all workloads

14

VALIDATION: SIMBA PE (PERFORMANCE)

Within 10% error

Outliers

15

CASE STUDIES

16

CASE STUDY: TECHNOLOGY MODEL

17

CASE STUDY: MEM HIERARCHY

18

USING TIMELOOP

THE MODEL

19

INVOKING THE MODELProblem

Architecture

Mapping

ACCELERGY

20

EXAMPLE 0: PROBLEM

for r = [0:R):
for p = [0:P):
Output[p] += Weight[r] * Input[p+r];

Conv1D

P

Weights

Inputs

Outputs

R

W=P+R-1

Think about:To represent this… And write:

problem:
shape:
name: Conv1D
dimensions: [R, P]
data-spaces:
- name: Weights
projection:
- [[R]]

- name: Inputs
projection:
- [[P], [R]]

- name: Outputs
projection:
- [[P]]
read-write: True

instance:
R: 3
P: 16

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces
P
ro

je
c
ti

o
n

Outputs

21

EXAMPLE 0: ARCHITECTURE
1-Level Temporal

Buffer

X

PE

To represent this… Write:

architecture:
subtree:

- name: PE
local:
- name: Buffer

class: SRAM
attributes:

entries: 64
instances: 1
word-bits: 8

- name: MACC
class: intmac
attributes:

word-bits: 8

22

EXAMPLE 0: MAPPING
1-Level Temporal

Buffer

X

PE

To represent this… Write:

mapping:
- target: Buffer
type: temporal
factors: R=3 P=16
permutation: RP

for p = [0:16):
for r = [0:3):
Output[p] += Weight[r] * Input[p+r];

23

EXAMPLE 0
Run Timeloop model:

>> timeloop-model arch.yaml problem.yaml map.yaml

Output:

timeloop-model.map.txt

Buffer [Weights:3 Inputs:18 Outputs:16]

| for P in [0:16)
| for R in [0:3)

timeloop-model.stats.txt
......
......
Summary Stats

Utilization: 1.00
Cycles: 48
Energy: 0.00 uJ
Area: 0.00 mm^2

MACCs = 48
pJ/MACC

MACC = 0.60
Buffer = 1.54
Total = 2.14

24

EXAMPLE 1: ARCHITECTURE
2-Level Temporal

Main Memory

Buffer

X

PE

To represent this… Write:

arch:
subtree:
- name: System
local:
- name: MainMemory
class: DRAM
attributes:
word-bits: 8

subtree:
- name: PE
local:
- name: Buffer
class: SRAM
attributes:
entries: 64
instances: 1
word-bits: 8

- name: MACC
class: intmac
attributes:
word-bits: 8

System

25

EXAMPLE 1: MAPPING
Weight Stationary

To represent this… Write:

mapping:
- target: MainMemory
type: temporal
factors: R=3 P=1
permutation: RP # inner to outer

- target: Buffer
type: temporal
factors: R=1 P=16
permutation: PR # inner to outer

for p1 in [0:1)
for r1 in [0:3)

for r0 in [0:1)
for p0 in [0:16)
Output[p] += Weight[r] * Input[p+r];

Buffer

Metric Weights Inputs Outputs

Buffer occupancy 1 P P

MainMemory accesses R W P

Buffer accesses PR PR 2PR

Expected outputs

26

EXAMPLE 1: MAPPING
Output Stationary

To represent this… Write:

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16
permutation: PR

- target: Buffer
type: temporal
factors: R=3 P=1
permutation: RP

Buffer

Metric Weights Inputs Outputs

Buffer occupancy R R 1

MainMemory accesses R W P

Buffer accesses PR PR 2PR

Expected outputs

for r1 in [0:1)
for p1 in [0:16)

for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

27

EXAMPLE 2: PROBLEM

for k = [0:K)
for r = [0:R):
for p = [0:P):
Output[k][p] += Weight[k][r] * Input[p+r];

Conv1D + Output Channels

P

Weights

Inputs

Outputs

R

W=P+R-1

Think about:To represent this… And write:

problem:
shape:
name: Conv1D
dimensions: [K, R, P]
data-spaces:
- name: Weights
projection:
- [[K]]
- [[R]]

- name: Inputs
projection:
- [[P], [R]]

- name: Outputs
projection:
- [[K]]
- [[P]]
read-write: True

instance:
K: 32
R: 3
P: 16

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces
P
ro

je
c
ti

o
n

Outputs

K

K

28

EXAMPLE 2: MAPPINGS
Untiled vs. K-tiled

Untiled mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16 K=32
permutation: RPK

- target: Buffer
type: temporal
factors: R=3 P=1 K=1
permutation: RPK

for k1 in [0:32)
for p1 in [0:16)
for r1 in [0:1)

for k0 in [0:1)
for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

Buffer

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16 K=16
permutation: RPK

- target: Buffer
type: temporal
factors: R=3 P=1 K=2
permutation: RPK

for k1 in [0:16)
for p1 in [0:16)
for r1 in [0:1)

for k0 in [0:2)
for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

Buffer

K-tiled

29

EXAMPLE 2: O.S. DATAFLOW VARIANTS
RWeights W = P+R-1Inputs POutputs

* =

K K

Weights Inputs Outputs

R R 1

R R 1

R W 1

KR R 1

KbR R 1

R R+Pb-1 1

Buffer occupancy

Weights Inputs Outputs

KR KW KP

KPR W KP

KR W KP

KR W KP

KR (K/Kb)W KP

K(P/Pb)R W KP

MainMemory accesses

Weights Inputs Outputs

KR W KP

Alg. min. MainMemory accesses

ሧ

𝑘=1

𝐾

ሧ

𝑝=1

𝑃

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

ሧ

𝑝=1

𝑃

ሧ

𝑘=1

𝐾

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

ሧ

𝑘1=1

𝐾1

ሧ

𝑝=1

𝑃

ሧ

𝑘0=1

𝐾0

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

where 𝐾 = 𝐾1 × 𝐾0 and 𝑘 = 𝑘1𝐾0 + 𝑘0

ሧ

𝑝1=1

𝑃1

ሧ

𝑘=1

𝐾

ሧ

𝑝0=1

𝑃0

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

where 𝑃 = 𝑃1 × 𝑃0 and 𝑝 = 𝑝1𝑃0 + 𝑝0

30

EXAMPLE 3: ARCHITECTURE
3-Level Temporal

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

31

EXAMPLE 3B: BYPASSING LEVELS
3-Level Temporal with Level Bypassing

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Weights Inputs Outputs

Weights Inputs

Outputs

mapping:

...

- target: GlobalBuffer
type: bypass
keep:
- Weights # same as default
- Inputs # same as default
bypass:
- Outputs # override

- target: RegisterFile
type: bypass
keep:
- Outputs # same as default
bypass:
- Weights # override
- Inputs # override

32

EXAMPLE 3B: BYPASSING

Bypassing

• Avoids energy cost of reading and writing buffers

• May result in additional accesses to outer buffers

• Does not change energy cost of moving data over network wires

For brevity in expressing mappings, Timeloop’s model application assumes each data
space is stored at each level.

• We will see later that Timeloop’s mapper makes no such assumption

33

EXAMPLE 4: SPATIAL INSTANCES
3-Level with multiple PEs

architecture:
subtree:
- name: System
local:
- name: MainMemory
class: DRAM
attributes:
......

subtree:
- name: Chip
local:
- name: GlobalBuffer
class: SRAM
attributes:
......

subtree:
- name: PE[0..15]
local:
- name: RegisterFile
class: regfile
attributes:
......

- name: MACC
class: intmac
attributes:
......

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

RegisterFile

X

PE

RegisterFile

X

PE

…

34

EXAMPLE 4: MAPPING
Spatial levels need loops too

To represent this…
Write:

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=1 K=1
permutation: PRK

- target: GlobalBuffer
type: temporal
factors: R=3 P=1 K=2
permutation: PRK

- target: GlobalBuffer
type: spatial
factors: R=1 P=1 K=16
permutation: PRK

- target: RegisterFile
type: temporal
factors: R=1 P=16 K=1
permutation: PRK

for k3 in [0:1)
for r3 in [0:1)
for p3 in [0:1)

for k2 in [0:2)
for r2 in [0:3)
for p2 in [0:1)

spatial_for k1 in [0:16)
spatial_for r1 in [0:1)
spatial_for p1 in [0:1)

for k0 in [0:1)
for r0 in [0:1)
for p0 in [0:16)

RegisterFile

MainMemory

GlobalBuffer

Spatial: GlobalBuffer →
RegiserFile

35

EXAMPLE 4: SPATIAL INSTANCES

Spatial levels need to be mapped.

By convention, a block of spatial_for loops representing a spatial fanout from storage
level Outer to storage level Inner are described as a spatial mapping directive
targeted at level Outer.

Specifying complete mappings manually is beginning to get tedious. Space of choices
and consequences is getting larger. Moving to realistic problem shapes and hardware
topologies, we get a combinatorial explosion.

Fortunately, Timeloop’s mapper was built exactly for this.

36

USING TIMELOOP

THE MAPPER

37

INVOKING THE MAPPER

ACCELERGY

Problem

Architecture

Constraints

Mapper parameters

To understand how the mapper works, let’s go back to a simpler hardware architecture.

38

EXAMPLE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

mapping:
- target: MainMemory

type: temporal
factors: R=1 P=16 K=4
permutation: RPK

- target: GlobalBuffer
type: temporal
factors: R=3 P=1 K=2
permutation: RPK

- target: RegisterFile
type: temporal
factors: R=1 P=1 K=4
permutation: RPK

Recall:

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

39

EXAMPLE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Mapspace: An enumeration
of ways to fill in these _
red blanks:
• Factors
• Permutations
• Dataspace Bypass*

* = not shown in example

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

40

EXAMPLE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Mapspace: An enumeration
of ways to fill in these _
red blanks:
• Factors
• Permutations
• Dataspace Bypass

Mapspaces can be
constrained by the user.
• Architecture constraints
• Mapspace constraints

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

R
1 1

41

EXAMPLE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Mapspace: An enumeration
of ways to fill in these _
red blanks:
• Factors
• Permutations
• Dataspace Bypass

Mapspaces can be
constrained by the user.
• Architecture constraints
• Mapspace constraints

Mapper runs a search
heuristic over the
constrained mapspace

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

R
1 1

42

TUNING THE MAPPER’S SEARCH

Search heuristics (as of this recording)

• Linear

• Random

• Hybrid

Optimization criteria: prioritized list of

statistics emitted by the model, e.g.,

• [cycles, energy]

• [last-level-accesses]

Termination conditions

• Mapspace exhausted

• #Valid mappings encountered >= “search-size”

• #Consecutive invalid mappings encountered >= “timeout”

• #Consecutive sub-optimal valid mappings encountered >= “victory-condition”

• Ctrl+C

43

DEEP DIVE:
UNDERSTANDING THE

MAPPER

44

CONSTRAINING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

45

CONSTRAINING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrain

46

PRUNING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrain

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Illegal (tiles won’t fit)

Superfluous
(permutations
of unit-factors)

47

PRUNING A MAPSPACE

Unconstrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Constrain Prune

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Illegal (tiles won’t fit)

Superfluous
(permutations
of unit-factors)

Index Factorization

Pruned,
constrained
mapspace

48

THE MAPPER

Pruned,

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
nMapper

Model

Heuristic Search

• Linear

• Random

• Hybrid

49

MULTI-THREADING

Pruned,

Constrained

Mapspace

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

Mapper

Index Factorization

L
o
o
p
 P

e
rm

u
ta

ti
o
n

M
a
p
sp

a
c
e

0

M
a
p
sp

a
c
e

1

M
a
p
sp

a
c
e

2

M
a
p
sp

a
c
e

3

Search 0
Search 1

Search 2
Search 3

Thread 0
Thread 1

Thread 2
Thread 3

Model 0
Model 1

Model 2
Model 3

Can also split along other dimensions

50

DEEP DIVE:
UNDERSTANDING THE

MODEL

51

THE MODEL

ACCELERGY

52

THE MODEL: TILE ANALYSIS
Mapping

tile i

tile i+1

delta

Deltas: set-difference between point sets

• Temporal: Indicates stationarity, sliding-
window behavior, etc.

• Spatial: Indicates overlaps/halos between
adjacent units, multicasting/forwarding
opportunities

Determines
tiles, spatial
partitioning of
tiles, and
schedule

Point sets: at each loop iteration (time step OR instance of a hardware unit)

Tile Analysis: Measure and
record deltas over all space
and time.

Naïve but robust approach:
simulate execution of entire
loop nest.

Regular problems:
• Compute 1st, 2nd, and last

iterations of each loop
• Point sets are Axis-Aligned

Hyper Rectangles (AAHR)

for …
for p=[0:8)
for …
for …

53

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

RegisterFile

X

PE

RegisterFile

X

PE

…

THE MODEL: UARCH MODEL

For each dataspace:

• Tile Accesses

• Multicast/Distribution

Patterns

• Recipient stats

L3

L2

L1

Arithmetic

From Tile Analysis

• Multiplier accesses

• Buffer accesses

• Network transfers

• Temporal and spatial accumulations

• Address-generator invocations

Derive

54

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

RegisterFile

X

PE

RegisterFile

X

PE

…

ESTIMATING PERFORMANCE AND ENERGY

Performance: Throughput of

rate-limiting step across:

• Multipliers

• Buffer read/write ports

• Networks

Assumption: Buffers are either

double-buffered or use buffets*

Energy: summation of costs for

various activities:

• Multiplier accesses

• Buffer accesses

• Network transfers

• Temporal and spatial

accumulations

• Address-generator invocations

* Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration; Michael Pellauer, Yakun Sophia Shao, Jason
Clemons, Neal Crago, Kartik Hegde, Rangarajan Venkatesan, Stephen W. Keckler, Christopher W Fletcher, Joel Emer; ASPLOS 2019

What are the per-activity costs?

55

FUTURE WORK

Search Heuristics

Workloads: Complete networks, with inter-layer optimization

Compressed-sparse architectures: modeling fragmentation, load imbalance and
metadata overheads

56

TIMELOOP

Timeloop aims to serve as a vehicle for quality research on flexible DNN accelerator architectures.
The infrastructure is released at https://github.com/NVlabs/timeloop under a BSD license.

Please join us in making Timeloop better and more useful for research opportunities across the
community.

ACCELERGY

https://github.com/NVlabs/timeloop

57

Resources

• Tutorial Related

– Tutorial Website: http://accelergy.mit.edu/isca20_tutorial.html

– Tutorial Docker: https://github.com/Accelergy-Project/timeloop-accelergy-tutorial

• Various exercises and example designs and environment setup for the tools

• Other

– Infrastructure Docker: https://github.com/Accelergy-Project/accelergy-timeloop-infrastructure

• Pure environment setup for the tools without exercises and example designs

– Open Source Tools

• Accelergy: http://accelergy.mit.edu/

• Timeloop: https://github.com/NVlabs/timeloop

– Papers:

• A. Parashar, et al. "Timeloop: A systematic approach to DNN accelerator evaluation," ISPASS, 2019.

• Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” ISPASS, 2020.

• Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” ICCAD, 2019.

http://accelergy.mit.edu/isca20_tutorial.html
https://github.com/Accelergy-Project/timeloop-accelergy-tutorial
https://github.com/Accelergy-Project/accelergy-timeloop-infrastructure
http://accelergy.mit.edu/
https://github.com/NVlabs/timeloop

