
1

Sparse Tensor Accelerators: 

Abstraction and Modeling

ISCA Tutorial

June 2021

Background Lecture Part 2

Joel Emer

Angshuman Parashar

Vivienne Sze

Po-An Tsai

Nellie Wu



2

Sparse Tensor Algebra in Popular Applications

[Hedge, MICRO19]

Workload Sparsity by Workload Domain

>80% is ineffectual

0 x Anything = 0 

0 + Anything = Anything

Ineffectual Computations



3

Mapping
Scheduling of data movement & 

compute in time & space

Processing Uncompressed Sparse Tensor Workloads

Example Workload: 

Dot Product of Vectors

Multiply-Accumulate 

Unit

Buffer

Accelerator Architecture

0

0

c

d

0

f

K ∙

0

h

i

j

0

l

𝑍 = ෍

𝑘=0

𝐾

𝐴 𝑘 ∗ 𝐵[𝑘]

= 𝑐𝑖 + 𝑑𝑗
+ 𝑓𝑙

for k in [0:K)
Z += A[k] * B[k]

A B Z



4

Mapping
Scheduling of data movement & 

compute in time & space

Processing Uncompressed Sparse Tensor Workloads

Example Workload: 

Dot Product of Vectors

Multiply-Accumulate 

Unit

Buffer

Accelerator Architecture

0

0

c

d

0

f

A B

K ∙

0

h

i

j

0

l

𝑍 = ෍

𝑘=0

𝐾

𝐴 𝑘 ∗ 𝐵[𝑘]

=

Z

for k in [0:K)
Z += A[k] * B[k]

0 0 c d 0 f

0 h i j 0 l

time

0 0

time

0*0

time

*Z data movements not shown

𝑐𝑖 + 𝑑𝑗
+ 𝑓𝑙



5

Mapping
Scheduling of data movement & 

compute in time & space

Processing Uncompressed Sparse Tensor Workloads

Example Workload: 

Dot Product of Vectors

Multiply-Accumulate 

Unit

Buffer

Accelerator Architecture

0

0

c

d

0

f

K ∙

0

h

i

j

0

l

𝑍 = ෍

𝑘=0

𝐾

𝐴 𝑘 ∗ 𝐵[𝑘]

=
for k in [0:K)
Z += A[k] * B[k]

0 0 c d 0 f

0 h i j 0 l

f0

time

0
lh0

time

f*l0*h0*0

time

*Z data movements not shown
Ineffectual computations introduce opportunities to 

exploit zero-based savings in hardware

A B Z

𝑐𝑖 + 𝑑𝑗
+ 𝑓𝑙



6

Hardware Sparse Optimization Features

Format:
Choose tensor representations to save 

necessary storage spaces and energy 

associated zero accesses

Gating:
Explicitly eliminate ineffectual storage 

accesses and computes by letting the 

hardware unit staying idle for the cycle to 

save energy 

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by skipping the 

cycle to save energy and time 



7

What is the chosen format?

Various Implementations Lead to Different Performance

Gating:
Explicitly eliminate ineffectual storage 

accesses and computes by letting the 

hardware unit staying idle for the cycle to 

save energy 

Skipping:
Explicitly eliminate ineffectual

storage accesses and computes by skipping the 

cycle to save energy and time 

When is a storage access gated?

Format:
Choose tensor representations to save 

necessary storage spaces and energy 

associated zero accesses



8

Diverse Sparse Tensor Accelerator Designs

Cnvlutin [ISCA2016] Tensor Core V3 [NVIDIA2020]

SCNN [ISCA2017]
Eyeriss V1 [JSSC 2017]

Eyeriss V2 [JATCAS 2019]

ExTensor [MICRO2019]

Each accelerator design carefully combines sparse optimization features that work the 

best with its architecture topology to improve energy efficiency and processing time



9

Diverse Sparse Tensor Accelerator Designs

Cnvlutin [ISCA2016] Tensor Core V3 [NVIDIA2020]

SCNN [ISCA2017]
Eyeriss V1 [JSSC 2017]

Eyeriss V2 [JATCAS 2019]

ExTensor [MICRO2019]

Each accelerator design carefully combines sparse optimization features that work the 

best with its architecture topology to improve energy efficiency and processing time

Important to perform apple-to-apple comparison 

and fast exploration of the designs in the diverse 

sparse tensor accelerator design space 

A fast modeling framework is necessary 



10

Analytical Sparse Tensor Accelerator Modeling

Timeloop V2

PE0 PE1

PE2 PE3

Global 

Buffer

(GLB)

Architecture

Sparse Optimization Features

format gating skipping

Mapping

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Mapping 

Valid ?

Energy

Cycles



11

Validation on Eyeriss V1 [ISSCC 2016]

High-Level Architecture

12x14-PE Array

PE PE PE PE… PE

I

Spad

MAC

W

Spad

O

Spad

DRAM [ Weights:884736 (884736) Inputs:230400 (63361) Outputs:259584 (78654) ] 
-----------------------------------------------------------------------------
| for M in [0:6)
|   for C in [0:64)

GLB [ Inputs:3600 (3600) Outputs:43264 (43264) ] 
-------------------------------------------------------
|     for N in [0:4)
|       for P in [0:13)
|         for Q in [0:1)
|           for Q in [0:13) (Spatial-X)
|             for M in [0:4) (Spatial-Y)
|               for S in [0:3) (Spatial-Y)

ISpad[ Inputs:12 (12) ] 
-----------------------------
|                 for Q in [0:1)

WSpad [ Weights:192 (192) ] 
----------------------------------
|                   for R in [0:3)
|                     for C in [0:4)

OSpad [ Outputs:16 (16) ] 
-----------------------------
|                       for M in [0:16)

Example Mapping (AlexNet Layer3)
Row Stationary Dataflow

If I == 0

PE PE PE PE…

… … … …

DRAM

GLB



12

Validation on Eyeriss V1 [ISSCC 2016]

• DRAM compression ratio

layer Eyeriss our work

1 1.2 1.24

2 1.4 1.37

3 1.7 1.68

4 1.8 1.86

5 1.9 1.93

• Normalized energy consumption with sparse 

optimization applied

• 45% vs. 43% in our estimation, 96% accurate

43% PE savings

Alexnet Conv Layer4



13

64-PE Array

Validation on SCNN Architecture [ISCA2017]

W DRAM

OA SRAM

W SRAM
C
h
a
n
n
e
l 

IA
 R

A
M X X

X X

……

Accum SRAM

…

…

IA
 R

A
M

PE PE PE PE…

if I_c == 0

If I OR W == 0

IO DRAM [ ] 
----------
| for W in [0:1)

O ARAM [ Outputs:75264 (34742) ] 
-------------------------------
|   for W in [0:1)

W DRAM [ Weights:884736 (325761) ] 
---------------------------------
|     for M in [0:6)
|       for W in [0:6) (Spatial-X)
|         for H in [0:6) (Spatial-X)

IA RAM [ Inputs:1024 (639) ] 
---------------------------
|           for W in [0:1)

Accumu SRAM [ Outputs:1024 (1024) ] 
-----------------------------------------
|             for C in [0:256)

Channel IARAM [ Inputs:4 (4) ] 
------------------------------
|               for W in [0:1)

W SRAM [ Weights:576 (213) ] 
--------------------------------
|                 for M in [0:16)
|                   for S in [0:3)
|                     for R in [0:3)
|                       for M in [0:4) (Spatial-Y)
|                         for W in [0:2) (Spatial-X)
|                           for H in [0:2) (Spatial-X)

Example Mapping (AlexNet Layer3)
Input Stationary Cartisian Product Dataflow

IO DRAM

High-Level Architecture



14

Validation on SCNN Architecture [ISCA2017]

Less than 1% error comparing to results 
generated by a custom SCNN simulator

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

DRAM WBUF IARAM Multilplier XBar ACCURAM OARAM

R
u
n
ti

m
e
 A

c
ti

v
it

y
 C

o
u
n
ts

  
%
 E

rr
o
r 

AlexNet Conv3

AlexNet Conv4

Inception_3a_3x3

Inception_3a_5x5

VGG_conv5_1

Components in SCNN Architecture



15

Proposed Analytical Sparse Tensor Accelerator Modeling

Timeloop V2

PE0 PE1

PE2 PE3

Global 

Buffer

(GLB)

Architecture

Sparse Optimization Features

format gating skipping

Mapping

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Mapping 

Valid ?

Energy

Cycles

Timeloop V2

Step1: Dense Modeling*

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling*

Dense traffic stats

Sparse traffic stats

*adapted and improved based on Timeloop V1



16

Analytical Modeling for Dense Accelerators 

Timeloop V2

Step1: Dense Modeling

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling

Dense traffic stats

Sparse traffic stats



17

Abstracts Problem Instance Details Away

Fast analytical modeling does not examine the exact data in workloads 

Problem Instance Shapes

∙ =

Exact Problem Instance

∙ =

A B Z A B Z



18

Abstracts Architecture Details Away

Main Memory

SRAM

Detailed Architecture

Main Memory
Storage

Abstract Architecture Topology

Multiplier

Buffer

SRAM

Multiplier

Buffer

SRAM

Multiplier

Buffer

SRAM
…

Buffer
Storage

Multiplier
Compute

Buffer
Storage

Multiplier
Compute

Buffer
Storage

Multiplier
Compute

…

Fast analytical modeling does not examine detailed architecture implementation 

Cgen

CalcCalc

Cgen

Cgen

CalcCalc

Cgen
Cgen

CalcCalc

CgenCgen

CalcCalc

Cgen

…



19

Dense Data Movement and Compute Analysis

Main Memory

------ Main Memory -------
for m in [0:M2)
for n in [0:N2)
for k in [0:K2)
par-for m in [0:M1)
par-for n in [0:N1)
par-for k in [0:K1)

------ Buffer-------
for m in [0:M0)
for n in [0:N0)
for k in [0:K0)
Z[m,n] += A[m,k]*B[k,n]

Buffer

Multiplier Multiplier Multiplier

Example Mapping

Buffer Buffer

time time time

…

…



20

Dense Data Movement and Compute Analysis

Main Memory

Answer dataflow related 

questions

• Which tensor is temporally 

reused at each storage level?

• How much data is transferred 

between storages?

• How many compute happened?

• …

------ Main Memory -------
for m in [0:M2)
for n in [0:N2)
for k in [0:K2)
par-for m in [0:M1)
par-for n in [0:N1)
par-for k in [0:K1)

------ Buffer-------
for m in [0:M0)
for n in [0:N0)
for k in [0:K0)
Z[m,n] += A[m,k]*B[k,n]

Buffer

Multiplier

time

time

time

Multiplier Multiplier

…

Example Mapping

Mapping Valid?

Energy Efficiency

Cycles

Buffer

time

time

time

Buffer

time

time

time

* More detailed explanation of the dense analysis can be found in Timeloop [Parashar, ISPASS 2019]



21

Buffer

Multiplier Multiplier Multiplier

Buffer Buffer

What is impact of sparse 

optimization features?

Sparse Accelerator Modeling is Data Dependent

Main Memory

Answer dataflow related 

questions

• Which tensor is temporally 

reused at each storage level?

• How much data is transferred 

between storages?

• How many compute happened?

• …

------ Main Memory -------
for m in [0:M2)
for n in [0:N2)
for k in [0:K2)
par-for m in [0:M1)
par-for n in [0:N1)
par-for k in [0:K1)

------ Buffer-------
for m in [0:M0)
for n in [0:N0)
for k in [0:K0)
Z[m,n] += A[m,k]*B[k,n]

time

time

time

…

Example Mapping

time

time

time

time

time

time

* More detailed explanation of the dense analysis can be found in Timeloop [Parashar, ISPASS 2019]

Mapping Valid?

Energy Efficiency

Cycles



22

Proposed Sparse Tensor Accelerator Modeling 

Methodology

Timeloop V2

Step1: Dense Modeling

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling

Dense traffic stats

Sparse traffic stats



23

Specifications and Their Interactions

Statistical 

Workload 

Density Models

Sparse 

Optimization 

Features

• Required hardware capacity at each level

• Resulting sparse traffic of the storage and compute units

Interactions

Mapping



24

Interactions Between Mapping and Workload Density Models

Proposed Sparse Tensor Accelerator Modeling 

Methodology



25

Analysis Based on Fibertree-based Tensor Abstraction

The format-agnostic nature of fibertree allows clean separation of 

the sparse nature of tensor and its format

Decides the theoretical savings sparse 

optimization features can bring

One of the implementation decisions to 

realize sparse optimization features 

R

2

c

3

d

5

f

0

0

c

d

0

f

A

M

Fibertree abstraction of 

tensor A 

fiber

coordinates

payload

rank



26

Buffer

0 f

Mapping Introduces Tiled Tensors

A

M0

M0

M1 M0

0

0

c

d

0

f

Multiplier

Main Memory

time

Accelerator Architecture

----- Main Memory -------
for m in [0:M1)
----- Buffer -------
for m in [0:M0)

Mapping

0 0 c d 0 f

0 0



27

All dependent on the sparse nature of 

the (sub)tensor, i.e., how many 

nonzeros values in (sub)tensor

Buffer

Mapping Introduces Tiled Tensors

A

M0

M0

M1 M0

0

0

c

d

0

f

Multiplier

Main Memory

Accelerator Architecture

----- Main Memory -------
for m in [0:M1)
----- Buffer -------
for m in [0:M0)

Mapping

0 0 c d 0 f

Final questions to answer

• How much capacity is needed to store the subtile?

• How much data transfers are there between storages?

• …

0 f

time

0 0



28

Fibertree Defines the Sparse Nature of Tensors

A

M0

M0

M1 M0

0

0

c

d

0

f

R

2

c

3

d

1 2

5

f

M0

M1

Characterizing the sparse nature of a (sub)tensor 

== 

Characterizing a fiber 

Buffer

Multiplier

Main Memory

Accelerator Architecture

0 0 c d 0 f

0 f

time

0 0

Fibertree abstraction of 

tiled tensor A 



29

Fibertree Defines the Sparse Nature of Tensors

A

M0

M0

M1 M0

0

0

c

d

0

f

R

2

c

3

d

Fibertree abstraction of 

tiled tensor A 

1 2

5

f

M0

M1 To characterize all the fibers in the tensor, we need 

to consider

- # of ranks

- # of fibers in each rank

- # of elements in each fiber, i.e., fiber occupancy

Deterministic when exact 

data can be examined



30

Statistical Density Models Necessary for Analytical Modeling

A

Non-deterministic fibertree abstraction of 

tiled tensor A 

To ensure fast modeling speed, analytical modeling cannot examine the exact data in fibers

Possible M0 Fiber Occupancies

0 1 … M0

Probability

Probability distributions depend on the choice of 

statistical workload density model

R

M0

M1

Without exact data, the # of fibers and # of 

elements in each fiber cannot be determined

…

M0

M0

M1 M0



31

Density Model 1: Hypergeometric Distribution

Describes the randomly distributed zeros in a tensor

a

b

c

d

e f

Example 6x6 tensor with 

randomly distributed density of 1/6

M

K

Fiber representing a 

coordinate tile of 

shape 18

Fiber representing a 

coordinate tile of 

shape 4

Fiber representing a 

coordinate tile of 

shape 9

The smaller the tile is, the more likely for the fiber 

to be empty/full (low density/high density)

Main Characteristics



32

Density Model 1: Hypergeometric Distribution

a

b

c

d

e f

Example 6x6 tensor with 

randomly distributed density of 1/6

M

K

Fiber representing a 

coordinate tile of 

shape 18

Fiber representing a 

coordinate tile of 

shape 4

Fiber representing a 

coordinate tile of 

shape 9

Fiber Densities Characterized By 

Hypergeometric Model



33

Density Model 2: Fixed-Structured Distribution

Describes a structured distribution of zeros in a tensor, where all tiles in 

the tensor have a shared fixed density

a

b

c

d

Example 6x6 tensor with 

a fixed structured density of 1/9 

M

K



34

a

b

c

d

Density Model 2: Fixed-Structured Distribution

Describes a structured distribution of zeros in a tensor, where all tiles in 

the tensor have a shared fixed density

Example 6x6 tensor with 

a fixed structured density of 1/9 

M

K

Main Characteristics

Fibers might have non-deterministic occupancy 

if tile shape x fixed density is non-integer

Fiber representing a 

coordinate tile of 

shape 18

Fiber representing a 

coordinate tile of 

shape 4

Fiber representing a 

coordinate tile of 

shape 6



35

a

b

c

d

Density Model 2: Fixed-Structured Distribution

Example 6x6 tensor with 

a fixed structured density of 1/9 

M

K

Fiber representing a 

coordinate tile of 

shape 18

Fiber representing a 

coordinate tile of 

shape 4

Fiber representing a 

coordinate tile of 

shape 6

Non-integer occupancy represented as weighted sum of integer possible occupancies

Fiber Densities Characterized By 

Fixed-Structured Density Model



36

Specifications and Their Interactions

Statistical 

Workload 

Density Models

Sparse 

Optimization 

Features

• Required hardware capacity at each level

• Resulting sparse traffic of the storage and compute units

Statistical characterization of fiber occupancies

Interactions

Mapping



37

Sparse Optimization Feature Impact Modeling

Proposed Sparse Tensor Accelerator Modeling 

Methodology



38

Specifications and Their Interactions

Statistical 

Workload 

Density Models

Sparse 

Optimization 

Features

• Required hardware capacity at each level

• Resulting sparse traffic of the storage and compute units

Statistical characterization of fiber occupancies

Interactions

Mapping



39

Baseline Storage Access Types Related to a Fiber

Deterministic based 

on the statistical 

occupancy of fiber

F
ib

e
r

Non-empty 
fiber 

elements

Accesses 

Gated accesses

Skipped accesses

Empty 
fiber 

elements

Accesses

Gated accesses

Skipped accesses



40

Baseline A Tensor Accesses in A Dot Product Workload

Main 

Memory

cycles (time)

Ap

Read(Ap[0])
Read(Ap[1])
Read(Ap[4])

Read(Ap[2])
Read(Ap[3])
Read(Ap[5])

R

2

c

3

d

5

f

A Fibertree 

representation

A Data 

representation

0 0 c d 0 fAp

Total: 6 actual accesses, 6 cycles

0

0

c

d

0

f

A B

K .

0

g

h

0

0

l

Workload: 

Dot Product

Read(Ap[0]) Read(Ap[1]) Read(Ap[2]) Read(Ap[3]) Read(Ap[4]) Read(Ap[5])



41

Dependent on sparse 

optimization features 

applied

and capability of 

hardware

Sparse Optimization Features Reduces Actual Accesses

Deterministic based 

on the statistical 

occupancy of fiber

F
ib

e
r

Non-empty 
fiber 

elements

Accesses 

Gated accesses

Skipped accesses

Empty 
fiber 

elements

Accesses

Gated accesses

Skipped accesses



42

Dependent on sparse 

optimization features 

applied

and capability of 

hardware

Gating Leads to Gated Accesses

Deterministic based 

on the statistical 

occupancy of fiber

F
ib

e
r

Non-empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses

Empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses *Note that since the "payload" of an element of a fiber may be a whole 

fiber (or tree of fibers) more than one accesses can be optimized

Gating:
Explicit energy saving of access to the payload* of one 

element of a fiber based on the emptiness of an element 

of another fiber



43

Zero-Gated A Tensor Accesses in A Dot Product Workload

R

2

c

3

d

5

f

A Fibertree 

representation

Main 

Memory
Ap

A Data 

representation

0 0 c d 0 fAp

Read(Ap[1])

Read(Ap[2])
Read(Ap[5])

Read(Ap[0])
Read(Ap[4])

Read(Ap[3])

Total: 3 actual accesses, 6 cycles

Gating unit

Gate A based on B

0

0

c

d

0

f

A B

K .

0

g

h

0

0

l

Workload: 

Dot Product

cycles (time)

Read(Ap[1]) Read(Ap[2]) Read(Ap[5])

b.c. B[0] == 0 b.c. B[3] == 0 b.c. B[4] == 0



44

Dependent on sparse 

optimization features 

applied

and capability of 

hardware

Skipping Leads to Skipped Accesses

Deterministic based 

on the statistical 

occupancy of fiber

F
ib

e
r

Non-empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses

Empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses *Note that since the "payload" of an element of a fiber may be a whole 

fiber (or tree of fibers) more than one accesses can be optimized

Gating:
Explicit energy saving of access to the payload* of one 

element of a fiber based on the emptiness of an element 

of another fiber

Skipping:
Explicit skipping over access to the payload* of one 

element of a fiber based on the emptiness of an element 

of another fiber



45

Zero-Skipped A Tensor Accesses in A Dot Product Workload

R

2

c

3

d

5

f

A Fibertree 

representation

Main 

Memory

cycles (time)

Ap

A Data 

representation

0 0 c d 0 fAp

Read(Ap[1])

0

0

c

d

0

f

A B

K .

0

g

h

0

0

l

b.c. B[3] == 0 b.c. B[4] == 0

Read(Ap[2])
Read(Ap[5])

Read(Ap[0])
Read(Ap[4])

Read(Ap[3])

b.c. B[0] == 0

Total: 3 actual accesses, 3 cycles

Skipping unit

Skip A based on B

Read(Ap[1]) Read(Ap[2]) Read(Ap[5])

Workload: 

Dot Product



46

Dependent on sparse 

optimization features 

applied

and capability of 

hardware

Compression Eliminates Accesses to Empty Elements

Deterministic based 

on the statistical 

occupancy of fiber

F
ib

e
r

Non-empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses

Empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses *Note that since the "payload" of an element of a fiber may be a whole 

fiber (or tree of fibers) more than one accesses can be optimized

Gating:
Explicit energy saving of access to the payload* of one 

element of a fiber based on the emptiness of an element 

of another fiber

Skipping:
Explicit skipping over access to the payload* of one 

element of a fiber based on the emptiness of an element 

of another fiber

Format:
Choose data representation formats to save storage space 

and/or allow better realization of gating and skipping



47

A Tensor Traversal with Coordinate Payload Format

Main 

Memory

cycles (time)

Read(Ac[0])
Read(Ap[0])

Read(Ac[1])
Read(Ap[1])

Read(Ac[2])
Read(Ap[2])Ap

R

2

c

3

d

5

f

A Fibertree 

representation
A Data 

Representation
Coordinate-Payload

c d fAp

0

0

c

d

0

f

A

M

2 3 5AC F
ib

e
r

Non-empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses

Empty fiber 
elements

Actual accesses 

Gated accesses

Skipped accesses

Read(Ap[0])
Read(Ap[1])
Read(Ap[2])

Workload: 

Tensor Traversal

Total: 3 actual data accesses, 3 cycles, 3 coordinate metadata accesses

AC

CP



48

Format Choice Leads to Metadata Overhead

R

2

c

3

d

5

f

0

0

c

d

0

f

A

M

Fibertree 

representation of 

tensor A 

0b001101 c d f

Bitmask

0 0 0 1 2 2 3

c d f

Uncompressed Offset Pair

2 3 5

c d f

Coordinate Payload

2 c 0 d 1 f

Run Length Encoding

0b001101 c d f

Uncompressed Bitmask
Metadata storage 

and access 

overhead related to 

fiber shape

Metadata storage 

and access 

overhead related to 

fiber occupancy*

Various 

Data 

Representations

*statistical based on 

density model

Metadata that identifies the locations of zeros is necessary



49

Per-Rank Occupancy and Access Analysis Allows Modeling of Arbitrary Compression Format

Multi-Rank Metadata Overhead

R

2

c

3

dA

M0

Fibertree representation of 

tiled tensor A 

M0

M1 M0

0

0

c

d

0

f

1 2

5

f

M0

M1

Bitmask

Uncompressed Offset Pair

Coordinate Payload

Run Length Encoding

Uncompressed Bitmask



50

Dependent on sparse 

optimization features 

applied

and capability of 

hardware

Impact Defined by Fibers in Different Tensors

Deterministic based 

on the statistical 

occupancy of fiber

F
ib

e
r

Non-empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses

Empty 
fiber 

elements

Actual accesses 

Gated accesses

Skipped accesses

Gating:
Explicit energy saving of access to the 

payload* of one element of a fiber based 

on the emptiness of an element of 

another fiber

*Note that since the "payload" of an element of a fiber may be a whole 

fiber (or tree of fibers) more than one accesses can be optimized

Skipping:
Explicit skipping over access to the 

payload* of one element of a fiber based 

on the emptiness of an element of 

another fiber

Format:
Choose data representation formats to save 

storage space and/or allow better 

realization of gating and skipping

Dependent on 

another tensor’s 

density

Dependent on the 

tensor’s own 

density



51

Interplay Between Different Sparse Optimization Features

Multiple sparse optimization features can be applied at the same time 

As a result, the impact on required storage capacity and storage accesses aggregates

B

Workload: 

Dot Product A Data 

Representation
Coordinate-Payload

c dAp

2 3AC

B Data 

Representation
Uncompressed

0 h i jBp

cycles (time)
Main Memory

ApAC

Bp

Skipping unit

if A == 0

x2

b.c.

A[0] == 0

A[1] == 0

A B

K

0

h

i

j

0

0

c

d

ic jd

• Processing time reduced by 2x

• Hardware capacity requirement reduced by 1.23x

• Number of payload storage accesses reduced by 2x

• Incurs 2 extra metadata storage access overhead

Each Ac value is 2 bits 

Each Ap value is 8 bits 

Each Bp value is 8 bits

.
for (a_c, a_p) in A:
Z[a_c] += a_p * Bp[a_c]

2 3

CP

Read(Ac[0])
Read(Ap[0])
Read(Bp[2])

Read(Ac[1])
Read(Ap[0])
Read(Bp[3])



53

Baseline Compute Unit Hardware Setup

Operand Alignment Unit

Compute unit

A Bm m

MUXMUX

0

A m Bm

Storage

… …

Compute Engine

0

sel sel

Operand alignment unit checks operand metadata and decides whether 

the incoming operands correspond to each other



54

Dependent on capability of 

hardware

Dependent on occupancy of fiber 

and data representation 

Sparse Optimization Features Lead to Different Types of Computes

E
le

m
e
n
t-

e
le

m
e
n
t 

C
o
m

p
u
te

Non-Empty x

Non-Empty 
Actual compute 

Non-Empty x

Empty 

Actual compute 

Gated compute

Non-Empty x

Not Exist

Actual compute 

Gated compute

Skipped compute

Empty x

Empty

Actual Compute

Gated Compute

Empty x 

Not Exist

Actual Compute

Gated Compute

Skipped Compute



55

Baseline Compute Unit Working on Dot Product

Main Memory
Ap

BC Bp

Compute

B

A Data 

Representation
Coordinate-Payload

c dAp

2 3AC

B Data 

Representation
Coordinate-Payload

h i jBp

1 2 3BC

h c i d j

A B

K ×

0

h

i

j

Workload: 

Dot Product

0

0

c

d

cycles (time)

K: contracted dimension

It is important to align the contracted 

dimension to perform a valid compute

Compute

(0, Bp[0])

Read(Bc[1])
Read(Bp[1])

Compute

(Ap[0], Bp[1])

Read(Ac[1])
Read(Ap[1])
Read(Bc[2])
Read(Bp[2])

Compute

(Ap[1], Bp[2])

Read(Ac[0])
Read(Ap[0])
Read(Bc[0])
Read(Bp[0])



56

Dependent on capability of 

hardware

Dependent on occupancy of fiber 

and data representation 

Sparse Optimization Features Lead to Different Types of Computes

E
le

m
e
n
t-

e
le

m
e
n
t 

C
o
m

p
u
te

Non-Empty x

Non-Empty 
Actual compute 

Non-Empty x

Empty 

Actual compute 

Gated compute

Non-Empty x

Not Exist

Actual compute 

Gated compute

Skipped compute

Empty x

Empty

Actual Compute

Gated Compute

Empty x 

Not Exist

Actual Compute

Gated Compute

Skipped Compute

Gating:
Explicit energy saving of compute when one of 

the payloads of operand elements is empty

(i.e., compute engine recognizing zero operands)



57

Gated Compute Unit Working on Dot Product

B

A Data 

Representation
Coordinate-Payload

c dAp

2 3AC

B Data 

Representation
Coordinate-Payload

h i jBp

1 2 3BC

A B

K ×

0

h

i

j

Workload: 

Dot Product

0

0

c

d

K: contracted dimension

It is important to align the contracted 

dimension to perform a valid compute

Main Memory
Ap

BC Bp

Compute

c i d j

cycles (time)

Read(Bc[1])
Read(Bp[1])

Compute

(Ap[0], Bp[1])

Read(Ac[1])
Read(Ap[1])
Read(Bc[2])
Read(Bp[2])

Compute

(Ap[1], Bp[2])

Read(Ac[0])
Read(Ap[0])
Read(Bc[0])
Read(Bp[0])

b.c. A[1] does not exist



58

Dependent on capability of 

hardware

Dependent on occupancy of fiber 

and data representation 

Sparse Optimization Features Lead to Different Types of Computes

E
le

m
e
n
t-

e
le

m
e
n
t 

C
o
m

p
u
te

Non-Empty x

Non-Empty 
Actual compute 

Non-Empty x

Empty 

Actual compute 

Gated compute

Non-Empty x

Not Exist

Actual compute 

Gated compute

Skipped compute

Empty x

Empty

Actual Compute

Gated Compute

Empty x 

Not Exist

Actual Compute

Gated Compute

Skipped Compute

Skipping:
Explicit skipping over a compute when one of 

the payloads of operand elements does not exist 

(i.e., look-up based operand alignment)

Gating:
Explicit energy saving of compute when one of 

the payloads of operand elements is empty

(i.e., compute engine recognizing zero operands)

Note: skipping cannot skip over empty elements



59

Skipped Compute Unit Working on Dot Product

B

A Data 

Representation
Coordinate-Payload

c dAp

2 3AC

B Data 

Representation
Coordinate-Payload

h i jBp

1 2 3BC

A B

K ×

0

h

i

j

Workload: 

Dot Product

0

0

c

d

K: contracted dimension

It is important to align the contracted 

dimension to perform a valid compute

Main Memory
Ap

BC Bp

Compute

c i d j

cycles (time)

Read(Bc[1])
Read(Bp[1])

Compute

(Ap[0], Bp[1])

Read(Ac[1])
Read(Ap[1])
Read(Bc[2])
Read(Bp[2])

Compute

(Ap[1], Bp[2])

Read(Ac[0])
Read(Ap[0])
Read(Bc[0])
Read(Bp[0])

b.c. A[1] does not exist

Assume we have enough bandwidth to 

read out two Bs to the compute unit in 

one cycle



60

Baseline Compute Unit Working on Cross Product

0

0

c

d

0

f

A B

M ×

Workload: 

Cross Product

N

for m in [0:M)
for n in [0:N)

Z[m,n] = A[m]*B[n]

0

h

i

j

Main Memory
Ap

BC Bp

Compute

B

A Data 

Representation
Coordinate-Payload

c d fAp

2 3 5AC

B Data 

Representation
Coordinate-Payload

h i jBp

1 2 3BC

cycles (time)

There is no contracted dimension in a 

cross product, no alignment needed

Read(Ac[0])
Read(Ap[0])
Read(Bc[0])
Read(Bp[0])

Read(Ac[0])
Read(Ap[0])
Read(Bc[1])
Read(Bp[1])

Read(Ac[0])
Read(Ap[0])
Read(Bc[2])
Read(Bp[2])

Read(Ac[1])
Read(Ap[1])
Read(Bc[0])
Read(Bp[0])

c h

Compute

(Ap[0], Bp[0])

c i

Compute

(Ap[0], Bp[0])

c j

Compute

(Ap[0], Bp[1])

d h

Compute

(Ap[0], Bp[2])

…

…



61

Compute

Interactions between Problem Spec and Opt. Features

0

0

c

d

0

f

A B

M ×

Workload: 

Cross Product

N

for m in [0:M)
for n in [0:N)

Z[m,n] = A[m]*B[n]

0

h

i

j

Main Memory
Ap

BC Bp

B

A Data 

Representation
Coordinate-Payload

c d fAp

2 3 5AC

B Data 

Representation
Coordinate-Payload

h i jBp

1 2 3BC

cycles (time)

There is no contracted dimension in a 

cross product, no alignment needed

Read(Ac[0])
Read(Ap[0])
Read(Bc[0])
Read(Bp[0])

Read(Ac[0])
Read(Ap[0])
Read(Bc[1])
Read(Bp[1])

Read(Ac[0])
Read(Ap[0])
Read(Bc[2])
Read(Bp[2])

Read(Ac[1])
Read(Ap[1])
Read(Bc[0])
Read(Bp[0])

…

…

Gating/Skipping does not 
make a difference

c h

Compute

(Ap[0], Bp[0])

c i

Compute

(Ap[0], Bp[0])

c j

Compute

(Ap[0], Bp[1])

d h

Compute

(Ap[0], Bp[2])



62

More Modeling Capabilities

• Zero-Gating and Zero-Skipping at 

intermediate storage levels

– Propagation Impact to lower storage and compute 

levels

– Choose gated/skipped tensor based on mapping

• Multi-rank compression formats

– Interaction between compression formats and 

mapping

– Compression with flattened ranks (important for 

deep neural network workloads)

– Decompression at inner storage levels
compute

spad

A B

G/S opt unit

compute

spad

A B

G/S opt unit

GLB

A B
time

corresponding tiles
BBAA

G/S optimization unit

Compute unit

spad

A B

G/S optimization unit

More Realistic Multi-Level Architecture

time



63

Specifications and Their Interactions

Statistical 

Workload 

Density Models

Mapping

Sparse 

Optimization 

Features

• Required hardware capacity at each level

• Resulting sparse traffic of the storage and compute units

Statistical characterization of fiber occupancies

• Additional storage capacity required by metadata

• Per-fiber data access savings and metadata access overhead

• Compute savings

Interactions



64

Specifications and Their Interactions

Statistical 

Workload 

Density Models

Mapping

Sparse 

Optimization 

Features

Statistical characterization of fiber occupancies

• Additional storage capacity required by metadata

• Per-fiber data access savings and metadata access overhead

• Compute savings

Apply appropriate scaling based on 

dense traffic–fiber shape ratio

• Required hardware capacity at each level

• Resulting sparse traffic of the storage and compute units

Decoupled dense-sparse 

analysis



65

Timeloop V2 (a.k.a. Sparseloop) Infrastructure



66

Timeloop V2

Timeloop V2

PE0 PE1

PE2 PE3

Global 

Buffer

(GLB)

Architecture

Sparse Optimization Features

format gating skipping

Mapping

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Mapping 

Valid ?

Energy

Cycles

Timeloop V2

Step1: Dense Modeling*

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling*

Dense traffic stats

Sparse traffic stats

*adapted and improved based on Timeloop V1



67

Timeloop V2 Inputs

Timeloop V2

PE0 PE1

PE2 PE3

Global 

Buffer

(GLB)

Architecture

Sparse Optimization Features

format gating skipping

Mapping

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Mapping 

Valid ?

Energy

Cycles

Timeloop V2

Step1: Dense Modeling*

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling*

Dense traffic stats

Sparse traffic stats

*adapted and improved based on Timeloop V1

- name: DRAM
action-optimization:

- type: skipping
- target: A
condition_on: [B]

- name: Spad
action-optimization:

- type: skipping
- target: A
condition_on: [B]

Example Sparse 

Optimization Specification

Inputs are in YAML format

More details on specification rules 

during hands-on session



68

Modularized Density and Format Models

Timeloop V2

Step1: Dense Modeling*

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling*

Dense traffic stats

Sparse traffic stats

*adapted and improved based on Timeloop V1

PE0 PE1

PE2 PE3

Global 

Buffer

(GLB)

Architecture

Sparse Optimization Features

gating skipping

Mapping

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

format

statistical 

fiber 

properties

Core Modeling Module

fiber

occupancy

per-rank

metadata + payload

occupancy

Metadata 

model 0Metadata 

model 0
Metadata 

Model 0

DensityMetadata 

model 0
Density

Model 0



69

Timeloop V2 Mapspace Exploration

Timeloop V2

Step1: Dense Modeling

Step2: Sparse Modeling

Step3: Micro-Architectural

Modeling

Dense traffic stats

Sparse traffic stats

Mapspace 

construction

Mapspace

M0

M1

M3

Mn

M2

search

mapper model

feedback

Energy 

Efficiency*

Cycles*

*best mapping’s 

(depending on search 

optimization metrics) stats

M4

Mi

PE0 PE1

PE2 PE3

Global 

Buffer

(GLB)

Architecture

M

H

C

P

W
Q

=…

R

S

C

R

S

C

Workload

Sparse Optimization Features

gating skippingformat



70

Case Studies



71

Explore different sparse optimization features

DRAM

High-Level 

Architecture Setup

12x14-PE Array

PE PE PE PE…
PE

I

Spad

MAC

W

Spad

O

Spad
PE PE PE PE…

… … … …

GLB

What are some important factors that 

define the impact of compressed data 

representation format?

CIO CWO CIWO



72

Uncompressed Traffic Breakdown vs. Compression Savings

0 0.5 1

AlexNet_conv5

AlexNet_conv4

Incept._3a_pool_proj

Inception_3a_1x1

input output weights

Uncompressed DRAM Traffic Breakdown AlexNet Conv4

The tensor that dominates uncompressed traffic 

introduces more savings when compressed

Is that true? No



73

Tensor Densities Play an Important Role

0 0.5 1

AlexNet_conv5

AlexNet_conv4

Incept._3a_pool_proj

Inception_3a_1x1

input output weights

Uncompressed DRAM Traffic Breakdown

AlexNet Conv4 AlexNet Conv5

Inception_3a_1x1 Inception_3a_pool_proj

The tensor that dominates uncompressed traffic 

introduces more savings when compressed

Is that true?  No

Layer # Inputs Outputs Weights

Inception_3a_1x1 0.71 0.66 0.37

Incept._3a_pool_proj 0.96 0.46 0.46

Alexnet_conv4 0.39 0.43 0.37

Alexnet_conv5 0.43 0.16 0.37

Layer Densities



74

Explore different sparse optimization features

DRAM

High-Level 

Architecture Setup

12x14-PE Array

PE PE PE PE…
PE

I

Spad

MAC

W

Spad

O

Spad
PE PE PE PE…

… … … …

GLB

What are some important factors that 

define the impact of compressed data 

representation format?

What are some important 

factors that define the 

impact of gating on-chip?

• Uncompressed traffic breakdown

• Tensor density

GIspad

GWsapd

GMAC

CIO CWO CIWO



75

The tensor that has lower density should be the 

conditioned on tensor, i.e., it should have associated 

with metadata and allows the other tensor to be gated

Is that true?  

Density vs. Gating Savings

Layer # Inputs Outputs Weights

Inception_3a_1x1 0.71 0.66 0.37

Incept._3a_pool_proj 0.96 0.46 0.46

Alexnet_conv4 0.39 0.43 0.37

Alexnet_conv5 0.43 0.16 0.37

Layer Densities

No

Inception_3a_1x1

AlexNet Conv4



76

Hardware Attirbutes Plays an Important Role

Inception_3a_1x1

AlexNet Conv4

No

I

Spad

MAC

W

Spad

O

Spad

Original PE Architecture

The tensor that has lower density should be the 

conditioned on tensor, i.e., it should have associated 

with metadata and allows the other tensor to be gated

Is that true?  

I

Spad

MAC

W

Spad

O

Spad

I

Spad

MAC

W

Spad

O

Spad

md*

md*

Gate Wspad PE Architecture

Gate Ispad PE Architecture

*metadata

Larger extra metadata storage 

introduces more expansive access 

overhead (and area overhead)



77

More Examples

Inception_3a_1x1

AlexNet Conv4 AlexNet Conv5

Inception_3a_pool_proj

Layer # Inputs Outputs Weights

Inception_3a_1x1 0.71 0.66 0.37

Incept._3a_pool_proj 0.96 0.46 0.46

Alexnet_conv4 0.39 0.43 0.37

Alexnet_conv5 0.43 0.16 0.37

Layer Densities

Gate compute only could introduce 

better energy efficiency 

(and simpler hardware)



78

Explore different sparse optimization features

DRAM

High-Level 

Architecture Setup

12x14-PE Array

PE PE PE PE…
PE

I

Spad

MAC

W

Spad

O

Spad
PE PE PE PE…

… … … …

GLB

What are some important factors that define the 

impact of compressed data representation format?

• Uncompressed traffic breakdown

• Tensor density

• Uncompressed traffic

• Tensor density

• Hardware attributes

What are some important 

factors that define the 

impact of gating on-chip?

GIspad

GWsapd

GMAC



79

Sparse Tensor Accelerator Modeling Summary

• Methodology

– Specifications

• Mapping

• Statistical workload density models

• Sparse optimization features 

– Systematic analysis of the interactions between different specifications

– Modularized modeling process that decouples dense traffic modeling and sparse optimization 

impact modeling

• Timeloop V2 (a.k.a. Sparseloop) Infrastructure

– Implements the proposed methodology based on Timeloop V1

– Modularized to allow data representation format and density model plug-ins

• Validation and case studies

– Validation on Eyeriss V1 and SCNN

– Exploration of various combinations of sparse optimization features



80

Sparse Tensor Accelerators: 

Abstraction and Modeling

ISCA Tutorial

June 2021

Background Lecture Part 2

Joel Emer

Angshuman Parashar

Vivienne Sze

Po-An Tsai

Nellie Wu


