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Sparse Tensor Algebra in Popular Applications

Sparse neural Dense linear algebra
networks Dense neural networks
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Finite Element Methods

Recommendation Computational Fluid Problems in
systems Chemistry Dynamics  statistics
Internet & Circuit Electromagnetics
Social media Simulation Proteins

Workload Sparsity by Workload Domain

[Hedge, MICRO19]
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Processing Uncompressed Sparse Tensor Workloads

Example Workload: Accelerator Architecture
Dot Product of Vectors

K
Z= ) Alk] * B[k]

Buffer
0 Mapping
0 Scheduling of data movement &
c | ci+dj compute in time & space
K d j * /t for k in [0:K)
f L Multiply-Accumulate
Unit
A B Z
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Processing Uncompressed Sparse Tensor Workloads

Example Workload: Accelerator Architecture
Dot Product of Vectors
Buffer
K
Z=ZA[k]*B[k] 0|0|c|d|o|f
k=0
4 O|lh|i]|j|O0]]
[o] [c] Mapping
0 h Scheduling of data movement & . _
c | _ [eitaj compute in time & space xlime Jime
K d j /! for k in [0:K) E E
O O Z += A[k] ki B[k] A 4 A 4
y
f L Multiply-Accumulate v\]me
W =)
B . 0°0]

*Z data movements not shown
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Processing Uncompressed Sparse Tensor Workloads

Example Workload: Accelerator Architecture
Dot Product of Vectors
Buffer
K
Z=ZA[k]*B[k] 0|lo|c|d|O]f
k=0
Rinlililo]l
0 Mapping
0 h Scheduling of data movement & . _
c N compute in time & space T-;Qme ime
K d j 7 for k in [0:K) O* @
O O Z += A[k] * B[k] A 4
"
f L Multiply-Accumulate -v\]me
Unit *
A B Z tat

] ] . *Z data movements not shown
Ineffectual computations introduce opportunities to

exploit zero-based savings in hardware
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Hardware Sparse Optimization Features

Format:
_)(_ Choose tensor representations to save
necessary storage spaces and energy
associated zero accesses

Gating:

Explicitly eliminate ineffectual storage
accesses and computes by letting the
hardware unit staying idle for the cycle to
save energy

Skipping:
» Explicitly eliminate ineffectual
storage accesses and computes by skipping the
cycle to save energy and time

s [Hir



Various Implementations Lead to Different Performance

Format:
_)(_ Choose tensor representations to save
necessary storage spaces and energy
associated zero accesses

Gating:

Explicitly eliminate ineffectual storage
accesses and computes by letting the
hardware unit staying idle for the cycle to
save energy

Skipping:
» Explicitly eliminate ineffectual
storage accesses and computes by skipping the
cycle to save energy and time




Diverse Sparse Tensor Accelerator Designs

Subunit 0
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Eyeriss V1 [JSSC 2017]

SCNN [ISCA2017] Eyeriss V2 [JATCAS 2019]

Each accelerator design carefully combines sparse optimization features that work the
best with its architecture topology to improve energy efficiency and processing time
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Diverse Sparse Tensor Accelerator Designs

Important to perform apple-to-apple comparison
and fast exploration of the designs in the diverse
sparse tensor accelerator design space

A fast modeling framework is necessary




Analytical Sparse Tensor Accelerator Modeling

Workload

] ]

1 ]

1 ]

Global i i

Buffer "‘I 1 1 i
1

(GLB) i PE2 p—4 PE3 i

]

1 ]

Sparse Optimization Features

->D<-

format

»

gating skipping

Timeloop V2

Mapping
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4
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Validation on Eyeriss V1 [ISSCC 2016]

High-Level Architecture

12x14-PE Array

PE

PE

PE

PE

PE

PE

PE

PE

»[Ne>[Ne

MAC

Example Mapping (AlexNet Layer3)
Row Stationary Dataflow

If I ==

DRAM [ Weights:884736 (884736) Inputs:230400 (63361) Outputs:259584 (78654) ]

| for M in [@:6)
|  for C in [@:64)

GLB [ Inputs:3600 (3600) Outputs:43264 (43264) ]

| for N in [@:4)

| for P in [@:13)

| for Q in [0:1)

| for Q in [@:13) (Spatial-X)
| for M in [0:4) (Spatial-Y)
|

for S in [@:3) (Spatial-Y)

ISpad[ Inputs:12 (12) ]

| for Q in [@:1)

WSpad [ Weights:192 (192) ]

[ for R in [@:3)
| for C in [0:4)

OSpad [ Outputs:16 (16) ]

[ for M in [0:16)
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Validation on Eyeriss V1 [ISSCC 2016]

* DRAM compression ratio - Normalized energy consumption with sparse
optimization applied

» 45% vs. 43% in our estimation, 96% accurate
layer Eyeriss our work
Alexnet Conv Layer4
1 1.2 1.24 Lo
0 ms DRAM
2 1.4 1.37 GLB
43% PE savings B MACs
3 1.7 1.68 >0-8 = Ospad
2 B Wspad
4 1.8 1.86 50'6 m— Ispad
5 1.9 1.93 3
2 04
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Validation on SCNN Architecture [ISCA2017]

High-Level Architecture

W DRAM

64-PE Array

PE

PE

PE PE

ifl_c==

If | ORW ==

Example Mapping (AlexNet Layer3)
Input Stationary Cartisian Product Dataflow

I0 DRAM [ ]

| for W in [0:1)

0 ARAM [ Outputs:75264 (34742) ]

for W in [0:1)

W DRAM [ Weights:884736 (325761) ]

for M in [@:6)
for W in [@:6) (Spatial-X)
for H in [@:6) (Spatial-X)

IA RAM [ Inputs:1024 (639) ]

for W in [0:1)

Accumu SRAM [ Outputs:1024 (1024) ]

for C in [0:256)

Channel IARAM [ Inputs:4 (4) ]

for W in [0:1)

W SRAM [ Weights:576 (213) ]

for M in [0:16)
for S in [0:3)
for R in [0:3)
for M in [0:4) (Spatial-Y)
for W in [@:2) (Spatial-X)
for H in [0:2) (Spatial-X)
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Runtime Activity Counts % Error

Validation on SCNN Architecture [ISCA2017]
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NN

Less than 1% error comparing to results
generated by a custom SCNN simulator
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Proposed Analytical Sparse Tensor Accelerator Modeling

Workload
o
7
" Timeloop V2
A
L
T .
b Step1: Dense Modeling* Mapping
<7 —> Valid ?
for Lt s by ¢ . | 4
L —_— l Dense traffic stats
(0] [(#)(p)(a] = Activation(@[n](n](p)[a]); Step2: Sparse Modeling # Energy
Architecture 7
: !
i| PEO }—< PE1 |[i .
Global | ! : Sparse traffic stats
Buffer "‘I 1 1 i - Cycles
—>
(GLB) i PE2 4 PE3 i
1 . .
Cmmm T Step3: Micro-Architectural
Sparse Optimization Features N\ode[ing*
—

> D <€
» *adapted and improved based on Timeloop V1

format gating skipping
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Analytical Modeling for Dense Accelerators

Timeloop V2

Step1: Dense Modeling

1 Dense traffic stats

Step2: Sparse Modeling

1 Sparse traffic stats

Step3: Micro-Architectural
Modeling

LU



Abstracts Problem Instance Details Away

Fast analytical modeling does not examine the exact data in workloads

Exact Problem Instance Problem Instance Shapes

7 1T



Abstracts Architecture Details Away

Fast analytical modeling does not examine detailed architecture implementation

a Main Memory
]

Main Memory
SRAM
e D
____________________________ S N S M—
: Buffer : Buffer It Buffer |1 i[ Buffer Buffer Buffer
@ SRAM B SRAM || | B | sram ||
(« (° (@ i : 4 \ 4 4
i ! {[ Multiplier Multiplier Multiplier
Multiplier Multiplier Multiplier i i

Detailed Architecture

Abstract Architecture Topology

i 1T



Dense Data Movement and Compute Analysis

Example Mapping

—————— Main Memory -------
for m in [@:M2)

for n in [@:N2) .
for k in [@:K2) Main Memory

! L ARV AN
: par\_-For\: n in [@:Nl) ’5’..“\. ...... é....\\
ipar-fori k in [@:K1) AN SN WO SO

.................................

for m in [©:MO) b
-For‘ n in [@:N@) ’r"""?"."g ...... E ...... ?\.\""
for k in [0:K0) f——
Z[m,n] += A[m,k]*B[k,n]

Multiplier Multiplier |- Multiplier

o 1T



Dense Data Movement and Compute Analysis

Example Mapping

—————— Main Memory -------
for m in [@:M2)

for n in [@:N2) .
for k in [@:K2) Main Memory
par-for m in [©:M1)
-f i 0:N1
gﬁ: b in Ee:m; Answer dataflow related
—————— Buffer------- :
for m in [0:M0) ) que§t|0ns
for n in [@:Ne) « Which tensor is temporally
f k i 0:Ko
cz)fm,n}ri A'fmfk]*s[k,n] A B Z reused at each storage level?
1 T  How much data is transferred

Buffer Buffer Buffer
rﬂ\time rﬂ\ti me F.‘\time

i between storages?
i .:I-—r.N'.ime q-—rN.] me -:I-—r-N-] me i @
i ——r-Nlime - r-Xtime ——r-Nlime i

 How many compute happened?

Mapping Valid?
Energy Efficiency
Cycles

* More detailed explanation of the dense analysis can be found in Timeloop [Parashar, ISPASS 2019] 2 [Wir



Sparse Accelerator Modeling is Data Dependent

Example Mapping

—————— Main Memory -------
for m in [@:M2)
for n in [@:N2)
for k in [@:K2)
par-for m in [©:M1)
par-for n in [©:N1)
par-for k in [0:K1)
—————— Buffer-------
for m in [0:M0)
for n in [@:NO@)
for k in [0©:K@)
Z[m,n] += A[m,k]*B[k,n]

Main Memory

>[Y«

»)(—

Buffer Buffer Buffer
rﬂ\time F\time r\\time
—r\t] me —ﬂ\t] me —.-‘\tl me
] ] ]
————r-N\lime 7 r-Ntime ————r-N\lime
J d d
VL 1 v v

Multiplier Multiplier Multiplier

* More detailed explanation of the dense analysis can be found in Timeloop [Parashar, ISPASS 2019]

What is impact of sparse
optimization features?

Answer dataflow related
questions
Which tensor is temporally
reused at each storage level?
How much data is transferred
between storages?
How many compute happened?

s

Mapping Valid?
Energy Efficiency
Cycles

2 iy



Proposed Sparse Tensor Accelerator Modeling
Methodology

Timeloop V2

Step1: Dense Modeling

1 Dense traffic stats

Step2: Sparse Modeling

1 Sparse traffic stats

Step3: Micro-Architectural
Modeling

2 Iir



Specifications and Their Interactions

4 ) 4 )
Statistical
Mapping Workload
Density Models
\_ J \_ J

Interactions

-

Sparse
Optimization
Features

* Required hardware capacity at each level
« Resulting sparse traffic of the storage and compute units

= 1T



Proposed Sparse Tensor Accelerator Modeling
Methodology

Interactions Between Mapping and Workload Density Models

2« IiT



Analysis Based on Fibertree-based Tensor Abstraction

Fibertree abstraction of
tensor A

fiber

rank

coordinates

>l +~|lo|la|ln|lo|o

payload

The format-agnostic nature of fibertree allows clean separation of

Decides the theoretical savings sparse One of the implementation decisions to
optimization features can bring realize sparse optimization features

s Ui



Mapping Introduces Tiled Tensors

Accelerator Architecture

Main Memory
0|0ic|d:io|f

Mapping

Buffer time

: X
‘.oo

Multiplier

————— Main Memory -------
for m in [0:M1)
————— Buffer -------

for m in [0:MO)

s IiT



Mapping Introduces Tiled Tensors

Accelerator Architecture

Main Memory

0]0:

c|d:io

Buffer

N

time
~N

A 4

Multiplier

Mapping

for m in [0:M1)

for m in [0:MO)

Main Memory -------

Buffer -------

Final questions to answer

« How much capacity is needed to store the subtile?
 How much data transfers are there between storages?

All

dependent on the sparse nature of
the (sub)tensor, i.e., how many
nonzeros values in (sub)tensor

2 Iir



Fibertree Defines the Sparse Nature of Tensors

Fibertree abstraction of Accelerator Architecture
tiled tensor A -
Main Memory
L 0{0ic|d:iO|f
Y o S M1 ry
P Rt A |
d A e e R RS S S I.3uffer\t,-me
| e 15 . . R g ‘ 1
0 o ¥ | 5 MO P 0]0
f : ..................... J:.: ......... i‘ : : A
| 1
A i [l - |
. oot F Lo Multiplier
F TETEETEEEEEmmEmmmmm_—_——— 1
1

Characterizing the sparse nature of a (sub)tensor

Characterizing a fiber

= Iir



Fibertree Defines the Sparse Nature of Tensors

Fibertree abstraction of
tiled tensor A

MO 0
110 M1 To characterize all the fibers in the tensor, we need
tlc to consider

M1 Mf d # of ranks

N 0 # of fibers in each rank

MO [~ Mo - # of elements in each fiber, i.e., fiber occupancy

o
A

Deterministic when exact
data can be examined

= 1T



Statistical Density Models Necessary for Analytical Modeling

To ensure fast modeling speed, analytical modeling cannot examine the exact data in fibers

Non-deterministic fibertree abstraction of
tiled tensor A Probability
1
mo | e
(N e Y ) M1
U R S,
M1 MO
Vol A I s
f : ------ :: : .......
MO RN i\ | MO
| l : ; =; : ...... E.if : : 0 1 » MO
A | ed Lot Ld k Possible MO Fiber Occupancies/
\ J
) 4
Without exact data, the # of fibers and # of Probability distributions depend on the choice of
elements in each fiber cannot be determined statistical workload density model

» [Iir



Density Model 1: Hypergeometric Distribution

Describes the randomly distributed zeros in a tensor

Example 6x6 tensor with
randomly distributed density of 1/6

K Fiber representing a
- “—g ,/ coordinate tile of
| I shape 4 . o
b | | Main Characteristics
|
——;'/ Fiber representing a The smaller the tile is, the mor.e likgly for the fiber
c ] coordinate tile of to be empty/full (low density/high density)
m
M | shape 9
|
, d
_—| Fiber representing a
e f coordinate tile of
shape 18

= Ilir



Density Model 1: Hypergeometric Distribution

Fiber Densities Characterized By

Example 6x6 tensor with Hypergeometric Model

randomly distributed density of 1/6

. . l . "
K Fiber representing a , gvfg;” tensor density:
I R ,/ coordinate tile of O'SA P ,
a I I h 4 waa B —A- tile_shape = 4
shape o o — O~ tile_shape =9
b : | 0.4 I \ -~ tile_shape = 18-
i @, \
C ;;/ Fiber representing a - I/ Il?; 5
— coordinate tile of Bl #Flgw O
0
M shape 9 S - R AN
I s / LY A
02 1 vy .
: d g ' 1 % ¥ \
' i ! I v ® \
| - - Fiber rgpreser)tmg a il ; . A _
| € coordinate tile of 5 i E\ N ~
h 18 4 | \ * F
0 0.2 0.4 0.6 0.8 1

Possible Fiber Densities

= Ilir <2



Density Model 2: Fixed-Structured Distribution

Describes a structured distribution of zeros in a tensor, where all tiles in
the tensor have a shared fixed density

Example 6x6 tensor with
a fixed structured density of 1/9

K

|
|
: b
|
|

= T



Density Model 2: Fixed-Structured Distribution

Describes a structured distribution of zeros in a tensor, where all tiles in
the tensor have a shared fixed density

Example 6x6 tensor with
a fixed structured density of 1/9

TV

Fiber representing a
coordinate tile of
shape 4

Fiber representing a
coordinate tile of
shape 6

Fiber representing a
coordinate tile of
shape 18

Main Characteristics

Fibers might have non-deterministic occupancy
if tile shape x fixed density is non-integer

= [T



Density Model 2: Fixed-Structured Distribution

Non-integer occupancy represented as weighted sum of integer possible occupancies

Example 6x6 tensor with : o :
: : Fiber Densities Characterized By
a fixed structured density of 1/9 : :
y Fixed-Structured Density Model
K Fiber representing a
o _a_ o | |/ coordinate tile of overall tensor density: 0.11
| 1 :

|
shape 4 ' E,‘ ' —

] A tile_shape = 4

| b I : O tile_shape = 6
1
|
|
1
|
|
|
|

O tile_shape = 18/ -

o
(0]

—| Fiber representing a
coordinate tile of

Probability
o
o

. _
shape 6 A
d 0.4
__—| Fiber representing a O
coordinate tile of 0.2 . 1 . .
0 0.05 0.1'  0.15 0.2 0.25

shape 18

Possible Fiber Densities

= T



Specifications and Their Interactions

Interactions

Mapping

~

4 )
Statistical
Workload

Density Models
\§ J

Statistical characterization of fiber occupancies

-

Sparse
Optimization
Features

* Required hardware capacity at each level
« Resulting sparse traffic of the storage and compute units

= |Iir



Proposed Sparse Tensor Accelerator Modeling
Methodology

Sparse Optimization Feature Impact Modeling

7 v



Specifications and Their Interactions

Interactions

~

Mapping

4 )
Statistical
Workload

Density Models
\§ J

Sparse
Optimization
Features

Required hardware capacity at each level
Resulting sparse traffic of the storage and compute units

= |Iir



Baseline Storage Access Types Related to a Fiber

Deterministic based
on the statistical
occupancy of fiber

Fiber

Accesses

Non-empty
—  fiber
elements

Accesses

Empty
—  fiber
elements

= v



Baseline A Tensor Accesses in A Dot Product Workload

Workload:
Dot Product

A Fibertree A Data

representation representation

Accesses

Non-empty
fiber
elements

|

Fiber

cycles (time)

Read(A;[2])
Read(A;[3])
Read(A;[5])

Accesses

Empty
fiber
elements

|

Read(A;[0])
Read(A;[1])
Read(A;[4])

»

| Read(A,[0]) | Read(A,[1]) | Read(A,[2]) | Read(A,[3]) | Read(A,[4])| Read(A[5])|

Total: 6 actual accesses, 6 cycles

o [T



Sparse Optimization Features Reduces Actual Accesses

Deterministic based
on the statistical
occupancy of fiber

Dependent on sparse
optimization features
applied

Accesses

Non-empty
fiber
elements

Fiber

Accesses

Empty
fiber
elements

a Iir



Gating Leads to Gated Accesses

Deterministic based Dependent on sparse

on the statistical optimization features
occupancy of fiber applied
Gating:
Actual accesses Explicit energy saving of access to the payload* of one
element of a fiber based on the emptiness of an element
Non-empty of another fiber
—  fiber Gated accesses |e--
elements :
g L
L
Actual accesses
Empty :
—  fiber Gated accesses |«
elements

*Note that since the "payload” of an element of a fiber may be a whole
fiber (or tree of fibers) more than one accesses can be optimized

< Iir



Zero-Gated A Tensor Accesses in A Dot Product Workload

Workload:
Dot Product

Gating unit

Gate A based on B

Actual accesses

Total: 3 actual accesses, 6 cycles

|
|
|
|
|
|
I
A Fibertree A Data i Non-empty
representation representation | 7 ooper
I _ Gated accesses
Ll
Lol
: Actual accesses
I Empty
| —  fiber
: elements Gated accesses
|
|
|
cycles (time)
| Read(A,[1]) | Read(A,[2]) | | Read(A,[5]) |
b.c. B[0] ==0 b.c. B[3] == b.c. B[4] == 0

Read(Ap[2])
Read(A,[5])

Read(A,[3])
Read(Ap[l])

Read(A,[0])
Read(A;[4])

« Ilir <2



Skipping Leads to Skipped Accesses

Deterministic based
on the statistical
occupancy of fiber

Dependent on sparse
optimization features

applied

Actual accesses

Non-empty
—  fiber
elements

Gated accesses

Fiber
|

Actual accesses

Empty
—  fiber
elements

Gated accesses

Gating:

Explicit energy saving of access to the payload® of one
element of a fiber based on the emptiness of an element
of another fiber

Skipping:
.:» Explicit skipping over access to the payload* of one
: element of a fiber based on the emptiness of an element
of another fiber

*Note that since the "payload” of an element of a fiber may be a whole
fiber (or tree of fibers) more than one accesses can be optimized

« |Iir



Zero-Skipped A Tensor Accesses in A Dot Product Workload

I |
I Workload: ;
i Dot Product :
: : i Actual accesses Read(Ap[Z])
: 0 0 A Fibertree A Data | Non-empty Read(A,[5])
i representation representation : B el;‘rﬁggts
: 0 g i Skipped accesses |Read(A;[3])
e h 8 M
| L
i d 0 ! Actual accesses Read(Ap[l])
! 0 0 : | |Empty fiber
! i elements Siooed Read(Ap[O])
] ¢ l : ipped accesses Read(Ap[4])
|
A B i
II,
{ cycles (time)
Main " :
memory | | DP> Read(a[1]) | Read(al2)| P B FReadd,5))]
A,
 Skipping unit_| b.c. B[0] == 0 b.c. B[3] == b.c. B[4] == 0

Skip A based on B
Total: 3 actual accesses, 3 cycles

s Ilir <2



Compression Eliminates Accesses to Empty Elements

Deterministic based
on the statistical
occupancy of fiber

applied

Actual accesses

Dependent on sparse
optimization features

Gating:

Explicit energy saving of access to the payload® of one
element of a fiber based on the emptiness of an element

Non-empty
—  fiber
elements

Gated accesses

of another fiber

€

Skipped accesses

: Skipping:
1.:» Explicit skipping over access to the payload* of one

element of a fiber based on the emptiness of an element

Fiber
|

of another fiber

Format:
-><- Choose data representation formats to save storage space
and/or allow better realization of gating and skipping

*Note that since the "payload” of an element of a fiber may be a whole
fiber (or tree of fibers) more than one accesses can be optimized

s« |Iir



A Tensor Traversal with Coordinate Payload Format

Read(A,[0])

i Workload: i
: TenS(;)rrTr(Zl?/ersal : —  Actual accesses Read(AE[1])
| I Read (A [2])
! : Non-empty
| 0 A Fibertree A Data i —  fiber Gated accesses
o representation Representation | elements
: Coordinate-Payload :
} C : — Skipped accesses
M g
| A. W) L E
i 0 ¢ : —  Actual-accesses
I f Aplc|d]|f i
:_____A_ _________________________________________________ : — EeLement—smpEH tbex Gated-accesses
________ e
¢ cycles (time) | Skipped-accesses
Main'

Memory Read(A.[0]) | Read(A_[1]) | Read(A[2])

: AC':Ap Read (Ap[O]) Read (Ap[1 1) | Read (Ap [2])
> Yecr

___________________ ;
Total: 3 actual data accesses, 3 cycles, :3 coordinate metadata accesses |

------------------- - o I <



Format Choice Leads to Metadata Overhead

Metadata that identifies the locations of zeros is necessary

Bitmask

Ob001101 | c |d | f

Uncompressed Bitmask

I 1
A Fibertree i Metadata storage i
0 representation of | 0b001101 c|d|f and access i

0 tensor A . i overhead related to |

c Various i Uncompressed Offset Pair fiber shape ]

M Data lololol1]2]2]3 |
d Representations | ;

0 lc|d|f i
VIS i Coordinate Payload i
A = |
2 3 5 Metadata storage

i ol and access i

i overhead related to !

i Run Length Encoding fiber occupancy* i

H2lclold|1]f *statistical based on i

3 density model !




Per-Rank Occupancy and Access Analysis Allows Modeling of Arbitrary Compression Format

Multi-Rank Metadata Overhead

Fibertree representation of
tiled tensor A

Bitmask
Uncompressed Bitmask

Uncompressed Offset Pair

Coordinate Payload

Run Length Encoding

o Ilir <2



Impact Defined by Fibers in Different Tensors

Deterministic based
on the statistical
occupancy of fiber

Dependent on sparse
optimization features

applied

Non-empty
fiber
elements

Actual accesses

Gated accesses

Fiber

o

Skipped accesses

» Explicit skipping over access to the
Q=

Gating:

Explicit energy saving of access to the ™
payload*® of one element of a fiber based
on the emptiness of an element of

another fiber
Dependent on
> another tensor’s

density

Skipping:

payload*® of one element of a fiber based __
on the emptiness of an element of
another fiber

Format:

§-><- Choose data representation formats to save Dependenton the

tensor’s own

storage space and/or allow better :
density

realization of gating and skipping

*Note that since the "payload” of an element of a fiber may be a whole
fiber (or tree of fibers) more than one accesses can be optimized

= [Iir



Interplay Between Different Sparse Optimization Features

a

0

0

h

i

J

0
C
d
A

B

Main Memory
Ac Ap

a5

A Data B Data

Representation

Representation

Coordinate-Payload Uncompressed

- |

Multiple sparse optimization features can be applied at the same time
As a result, the impact on required storage capacity and storage accesses aggregates

Workload:
Dot Product

for (a_c, a p) in A:
Z[a_c] += a_p * B,[a_c]

Skipping unit ]

A, lc|d B,|O|h|i]]
cycles (time)
Read(A [0]) Read(A_[1])

Read(A,[0]) | Read(A
x2 Read(B,[2]) | Read(B

p
p

)
)

b.c. clli

d

[1]
[0]
[3]

J

Each A_ value is 2 bits
Each Ap value is 8 bits
Each Bp value is 8 bits

Processing time reduced by 2x

Hardware capacity requirement reduced by 1.23x
Number of payload storage accesses reduced by 2x
Incurs 2 extra metadata storage access overhead

= Ilir



Baseline Compute Unit Hardware Setup

Storage

A
A
1 |

- sel ) ) sel -
MUX *—[ Operand Alignment Unit}—* MUX

Compute unit

Compute Engine

Operand alignment unit checks operand metadata and decides whether
the incoming operands correspond to each other

= |Iir



Sparse Optimization Features Lead to Different Types of Computes

Dependent on occupancy of fiber

and data representation

Non-Empty x
Non-Empty

Dependent on capability of
hardware

Element-element

Compute

Non-Empty x
Empty

Actual compute

Actual compute

Non-Empty x
Not Exist

Actual compute

Empty x
Empty

Actual Compute

Empty x
Not Exist

Actual Compute

=« [T



Baseline Compute Unit Working on Dot Product

Workload:

of |0
O |h
c | X
] L
A B

Dot Product

A Data B Data

Representation Representation
Coordinate-Payload  Coordinate-Payload

AC M1 2 3

K: contracted dimension

dimension to perform a valid compute

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: It is important to align the contracted
|
|
|
|
|
|
|
|
|
|
|
|
|
|

— cycles (time)

Main Memory
A

p
B. B,

Compute

Read(A.[0]) | Read(B[1]) | Read(A[1])
Read(A,[0]) | Read(B,[1]) | Read(A[1])
Read(B_[0]) Read(B [2])
Read(B,[0]) Read(B,[2])
O Compute Compute
(0, B,[0]) | (A,[0], B,[1])
h C i

Compute

(As[1], By[2])

d J

= |Ilir <2



Sparse Optimization Features Lead to Different Types of Computes

Dependent on occupancy of fiber

and data representation

Non-Empty x
Non-Empty

Dependent on capability of

hardware

Element-element
Compute

Non-Empty x
Empty

Actual compute

Actual compute

Gated compute

Non-Empty x
Not Exist

Actual compute

Empty x
Empty

Gated compute

Actual Compute

Gated Compute

Empty x
Not Exist

Actual Compute

Gated Compute

Gating:
Explicit energy saving of compute when one of
the payloads of operand elements is empty
(i.e., compute engine recognizing zero operands)

s [T



Gated Compute Unit Working on Dot Product

Workload:

0

O |h

cxi
Il

A B

Dot Product

A Data
Representation

B Data
Representation

Coordinate-Payload  Coordinate-Payload

AC M1 2 3
Ayjlc|d Byl h|i]]

K: contracted dimension

dimension to perform a valid compute

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: It is important to align the contracted
|
|
|
|
|
|
|
|
|
|
|
|
|
|

— cycles (time)

Main Memory
A

p
B. B,

Compute

b.c. A[1] does not exist

1)
1)
1)
Read(B,[2])
Compute

(A,[0], B,[1])

C 1

Compute

(A,[1], By[2])

d ]

= |Ilir <2



Sparse Optimization Features Lead to Different Types of Computes

Dependent on occupancy of fiber

and data representation

Non-Empty x
Non-Empty

Dependent on capability of

hardware

Element-element
Compute

Non-Empty x
Empty

Actual compute

Actual compute

Gated compute

Non-Empty x
Not Exist

Actual compute

Gated compute

Empty x
Empty

Skipped compute

Actual Compute

Gated Compute

Empty x
Not Exist

Actual Compute

Gated Compute

Skipped Compute

Gating:
Explicit energy saving of compute when one of
the payloads of operand elements is empty

(i.e., compute engine recognizing zero operands)

»

SKkipping:
Explicit skipping over a compute when one of
the payloads of operand elements does not exist
(i.e., look-up based operand alighment)

Note: skipping cannot skip over empty elements

= |Iir



Skipped Compute Unit Working on Dot Product

Workload:
Dot Product

i A Data B Data i K: contracted dimension
! I 0 Representation Repr.esentation i
i 0 h Coordinate-Payload  Coordinate-Payload : It is important to align the contracted
'K X[ i dimension to perform a valid compute
l ; : A B. EEVEE; i |
I Alcld B [hli : Assume we have enough bandw:dth. tq
: A B P P J ............................................. : ...................... read OUt tWO BS tO the Compute Ur”t in
e e
pr , cycles (time)
Main Memory |  Read(A_[0]) Read(A [1])
A, Read(A,[0]) v Read(A,[1])
B, B, Read(B.[0]) Read(B.[1]) Read(B.[2])
Read(B,[0]) Read(B,[1]) Read(B,[2])
» Compute Compute
Compute O (A01, B,[1]) | (A[1], B,[2])
» b.c. A[1] does not exist C i d j o Illil- @2




Baseline Compute Unit Working on Cross Product

for m in [O:M)

i Workload: p : , i : : .
| Cross Product or n in [@:N) . ; There is no contracted dimension in a
i Z[m,n] = Alm]*B[n] : cross product, no alignment needed
i 0 A Data B Data ;
! 0 0 Representation Representation :
! Coordinate-Payload  Coordinate-Payload I
' C h :
M X N l
1T |IF Ac H1 23 i
! ) T . I
i . Ajlcid]|f Byl h|i]] i
A B |
== cycles (time)
Main Memory [ Read(A_[0]) Read(A[0]) | Read(A[0]) | Read(A/[1])
Ap Read(A,[0]) Read(A,[0]) Read(A,[0]) Read(A,[1])
B, Bp Read(B.[0]) Read(B_.[1]) Read(B_[2]) Read(B_[0])
Read(B,[0]) Read(B,[1]) Read(B,[2]) Read(B,[0])
Compute Compute Compute Compute
Compute | € | (Af0] B,I0]) | (A,[01, B,I0]) | (AI0L, Byl1]) | (A,[0], B,[2]
C h C i C j d h

o |Ilif <2



Interactions between Problem Spec and Opt. Features

for m in [O:M)

i Workload: p : , i : : .
| Cross Product or n in [@:N) . ! There is no contracted dimension in a
i Z[m,n] = Alm]*B[n] : cross product, no alignment needed
i 0 A Data B Data ;
! 0 0 Representation Representation :
! Coordinate-Payload  Coordinate-Payload I
: C h :
M X N ' ) ..
! d i : Gating/Skipping does not
1o ; Ac B | make a difference
e Aylc|d]f Bl h|i]]
A B |
e cycles (time)
Main Memory | Read(A_0]) Read(A.[0]) Read(A_[0]) Read(A.[1])
A, Read(A,[0]) Read(A,[0]) Read(A_[0]) Read(A,[1])
p
B, Bp Read(B.[0]) Read(B_.[1]) Read(B_[2]) Read(B_[0])
Read(B,[0]) Read(B,[1]) | Read(B,[2]) | Read(B,[0])
r‘~~| Compute Compute Compute Compute
Compute O (A,[0], B,[0]) | (A,[0], B,[O]) | (A,[O], By[1]) | (A,[O], B,[2])
g [ c| | c] D d] [h o WiT




More Modeling Capabilities

’ Zero'Gatmg and Zero-Sklppmg at More Realistic Multi-Level Architecture
intermediate storage levels
— Propagation Impact to lower storage and compute GLB
levels G/S optimization unit
— Choose gated/skipped tensor based on mapping time, time A
* Multi-rank compression formats T arespondg e
— Interaction between compression formats and =
mapping \_{ spad
. . . G/S optimization unit
— Compression with flattened ranks (important for ]
deep neural network workloads) ,_ﬁ}l E"

— Decompression at inner storage levels Compute unit _IJ

= [Iir



Specifications and Their Interactions

Interactions

4 ) 4 ) 4 )
Statistical Sparse
Mapping Workload Optimization
Density Models Features
\_ t J \_ 1 J \_ J
Statistical characterization of fiber occupancies
} }

« Compute savings

» Per-fiber data access savings and metadata access overhead

Additional storage capacity required by metadata i

* Required hardware capacity at each level
« Resulting sparse traffic of the storage and compute units

= [T



Specifications and Their Interactions

Mapping

Decoupled dense-sparse

analysis

Compute savings

Additional storage capacity required by metadata
Per-fiber data access savings and metadata access overhead

Apply appropriate scaling based on
dense traffic-fiber shape ratio

e

Required hardware capacity at each level

Resulting sparse traffic of the storage and compute units

) 4 ) 4 )
Statistical Sparse
Workload Optimization
Density Models Features
J/ \_ 1 J \_ J/
Statistical characterization of fiber occupancies
| !

o« [T



Timeloop V2 (a.k.a. Sparseloop) Infrastructure
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Workload

for (c=8; c<C; c+4) {
o[n][n]lp]lal += I[n]lc](Up+r][Uats] x FIm]{<](rIls]5

}
1

o(n](n][p](a] = Activation(@[n][n](¢](a]);

Architecture

i ]

1 ]

1 ]

Global i i
Buffer "‘I 1 ) >

: !

1 ]

1 ]

1 ]

(GLB)

Sparse Optimization Features

->D<- »

format gating skipping

Timeloop V2

Timeloop V2

Step1: Dense Modeling*

l Dense traffic stats

Step2: Sparse Modeling

Sparse traffic stats

Step3: Micro-Architectural
Modeling®

Mapping
Valid ?
7
Energy
| 4

Cycles J

*adapted and improved based on Timeloop V1

o [T



Workload

<C; crt) {
) O[n][mllp]la] += I[n]lc](Vp+r]lUa+s] x FIn][<](r1s]5

O[n][m][p][a) = Activation(O[n][n](p][al);

Architecture

] ]

1 ]

1 ]
Global i i
Buffer "‘I 1 )
: !

1 ]

1 ]

1 ]

(GLB)

Sparse Optimization Features

->D<- »

format gating skipping

Timeloop V2 Inputs

Inputs are in YAML format

Example Sparse
Optimization Specification

- name: DRAM
action-optimization:
- type: skipping
- target: A
condition_on: [B]
- name: Spad
action-optimization:
- type: skipping

- - target: A
condition_on: [B]
— More details on specification rules

during hands-on session




Modularized Density and Format Models

Workload

<5 > )
Mapping
T ¢
for ot b e ¢ #
o[n][=1[plla] = 8[n];
for ks ks et
or (c=8; <<C; c++) {
O[n1[mllp]lal += Z[n]lc]Up+r][Ua+s] x FIm][c][r][s];
} ! }
o(n][m)[p]la) = Activation(@[n][n](p](a]);
Architecture
—  ————
! !
i| PEO }—< PE1 [i
Global i i
]
Buffer "‘I 1 1 : ’
GLB ! I
(GLB) i PE2 P4 PE3 |}
i i
i o o e e o s o e e Fl

Sparse Optimization Features

->D<- »

format gating skipping

Timeloop V2

Step1: Dense Modeling*

l Dense traffic stats

Step2: Sparse Modeling

Sparse traffic stats

Step3: Micro-Architectural
Modeling®

*adapted and improved based on Timeloop V1

statistical
fiber -
properties|”
Metadata | Density
Model 0 | Model 0
per-rank fiber
metadata + payload occupancy
occupancy
4 \ 4
Core Modeling Module

[T



Timeloop V2 Mapspace Exploration

Workload
Timeloop V2
mapper model
Mapspace > Stepl: Dense Modeli
construction epl: Lense Modeling
Mapspace Dense traffic stats Energy
. . " " . —>| Efficiency*
i PEO p— PE1 : ° M : Step2: Sparse Modeling
Global | i ! — 1
Buffer P4 T ) G
(GLB) | ! | M; L ,
i| PE2 >—1 PE3 i M, - M - Sparse traffic stats _, Cycles*
e i M4 N‘\, \ 4
o Step3: Micro-Architectural
Sparse Optimization Features search Modeling
» S
> D <« *best mapping’s
feedback (de;?eqding on sear.ch
format gating skipping optimization metrics) stats

o [T



Case Studies
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Explore different sparse optimization features

ish-L > Ye ... .
A thg t evesl t ) 5 “-. What are some important factors that
rehitecture >etup i )(— 93(— 93(— define the impact of compressed data
: : representation format?

12x14-PE Array

PEJ|PE||PE| .. |PE

PE[|PE||PE| .. |PE

n Ilir <2



Uncompressed Traffic Breakdown vs. Compression Savings

Uncompressed DRAM Traffic Breakdown AlexNet Conv4
Ninput 3 output 7 weights 107 pumm o e s | P DRAM
GLB
Inception_3a_1x1 o8 mm MACs
' d
...... Incept._3a_pool_proj NN\ |... & =
AlexNet_conv4 “20-6 - Ispad
............................................................................................................. @
AlexNet_conv5 I
£04
0 0.5 1 2
0.2
The tensor that dominates uncompressed traffic |
introduces more savings when compressed baseline — Clo cWo  CIWO

Is that true? No

= Ilif <



Tensor Densities Play an Important Role

Uncompressed DRAM Traffic Breakdown

input Eoutput weights
Inception_3a_1x1
Incept._3a_pool_proj

AlexNet_conv4

AlexNet_convb

The tensor that dominates uncompressed traffic
introduces more savings when compressed

Is that true? No

Layer Densities

Layer # Inputs Outputs Weights
Inception_3a_1x1 0.71 0.66 0.37
Incept._3a_pool_proj 0.96 0.46 0.46
Alexnet_conv4 0.39 0.43 0.37
Alexnet_conv5 0.43 0.16 0.37

1.0

o
o)

Normalized Energy

o
[N

0.0-

1.0

0.8+

Normalized Energy

0.2 1

0.0-

Inception_3a_1x1

©
o

o
»

baseline CIO CwWo CIwo

AlexNet Conv4

baseline CIO CwWo CIwo

1.0

o o o
ES o o

Normalized Energy

o
[N

1.0

o
o]

Normalized Energy
o
N

o
(N}

Inception_3a_pool_proj

0_
baseline CIO CWO CIwWO

AlexNet Conv5

o
o

0.0-
baseline CIO cwo Cdwo

DRAM
GLB
MACs
Ospad
Wspad
Ispad



Explore different sparse optimization features

High-L > Y€ ... :
A h'tg t evesl t ) 5 “-. What are some important factors that
rchitecture >etup >Ne>Ne > Ne define the impact of compressed data
: : representation format?

Uncompressed traffic breakdown
Tensor density

12x14-PE Array

.. What are some important
* factors that define the
impact of gating on-chip?

PEJ|PE||PE| .. |PE

PE[|PE||PE| .. |PE

= Ilir <2



Density vs. Gating Savings

Layer Densities

______ Layer # Inputs Outputs Weights
Inception_3a_1x1 0.71 0.66 0.37
............ Incept_3a_poo[_projo%046046
Alexnet_conv4 0.39 0.43 0.37
Alexnet_convb 0.43 0.16 0.37

The tensor that has lower density should be the
conditioned on tensor, i.e., it should have associated
with metadata and allows the other tensor to be gated

Is that true? No

1.0

o
]

Normalized Energy
o
(=]

o
N

0.0-
baseline Glspad GWspad GMAC

AlexNet Conv4

Inception_3a_1x1

o
'S

1.0

e Q o
» o o

Normalized Energy

o
(N}

0.0-

baseline Glspad GWspad GMAC

DRAM
GLB
MACs
Ospad
Wspad
Ispad

DRAM
GLB
MACs
Ospad
Wspad
Ispad

7

[é)]
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Hardware Attirbutes Plays an Important Role

The tensor that has lower density should be the
conditioned on tensor, i.e., it should have associated
with metadata and allows the other tensor to be gated

Is that true? No Gate Wspad PE Architecture

md*

Original PE Architecture -

we ]| > |
md*

Larger extra metadata storage
introduces more expansive access
overhead (and area overhead)

MAC

Gate Ispad PE Architecture

1.0

o
]

Normalized Energy
o
(=]

o
N

0.0-
baseline Glspad GWspad GMAC

Inception_3a_1x1

o
'S

AlexNet Conv4

1.0

e Q o
» o o

Normalized Energy

o
(N}

0.0-

baseline Glspad GWspad GMAC

DRAM
GLB
MACs
Ospad
Wspad
Ispad

DRAM
GLB
MACs
Ospad
Wspad
Ispad

7

]
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More Examples

Layer Densities

Layer # Inputs Outputs Weights
Inception_3a_1x1 0.71 0.66 0.37
flllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.
= Incept._3a_pool_proj 0.96 0.46 0.46 .
.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.
Alexnet_conv4 0.39 0.43 0.37
Alexnet_conv5 0.43 0.16 0.37

Gate compute only could introduce
better energy efficiency
(and simpler hardware)

1.0

o
o

Normalized Energy
o
o))

bt
N

Inception_3a_1x1

o
'S

0.
baseline Glspad GWspad GMAC

AlexNet Conv4

1.0

o o o
=Y [=)] [e5]

Normalized Energy

o
(N}

O.
baseline Glspad GWspad GMAC

Normalized Energy
o
n

o
[N]

0.0-

1.0

o
(o)

Normalized Energy

o
(¥}

o
o

o
o~

Inception_3a_pool_proj

baseline Glspad GWspad™ GMAC =
GEEEn
AlexNet Convb

DRAM
GLB
MACs
Ospad
Wspad
Ispad

0.
baseline Glspad GWspad GMAC

1-nnn \'g



Explore different sparse optimization features

High-Level
Architecture Setup

* What are some important factors that define the
impact of compressed data representation format?

« Uncompressed traffic breakdown
« Tensor density

12x14-PE Array

PE ([ PE || PE .. |PE ~ What are some important
: : : : * factors that define the
PEIIPEIIPEl ... | PE impact of gating on-chip?

« Uncompressed traffic
« Tensor density
* Hardware attributes

= Ilir <2



Sparse Tensor Accelerator Modeling Summary

* Methodology
— Specifications
* Mapping
 Statistical workload density models

» Sparse optimization features
— Systematic analysis of the interactions between different specifications

— Modularized modeling process that decouples dense traffic modeling and sparse optimization
impact modeling

« Timeloop V2 (a.k.a. Sparseloop) Infrastructure
— Implements the proposed methodology based on Timeloop V1

— Modularized to allow data representation format and density model plug-ins

« Validation and case studies
— Validation on Eyeriss V1 and SCNN

— Exploration of various combinations of sparse optimization features

= T
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