Sparse Tensor Accelerators: Abstraction and Modeling

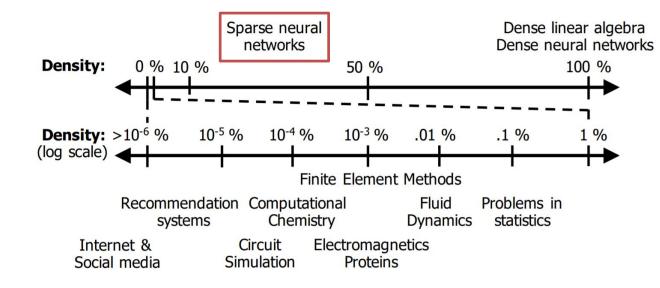
Background Lecture Part 2

Joel Emer Angshuman Parashar Vivienne Sze Po-An Tsai Nellie Wu

ISCA Tutorial

June 2021

Sparse Tensor Algebra in Popular Applications



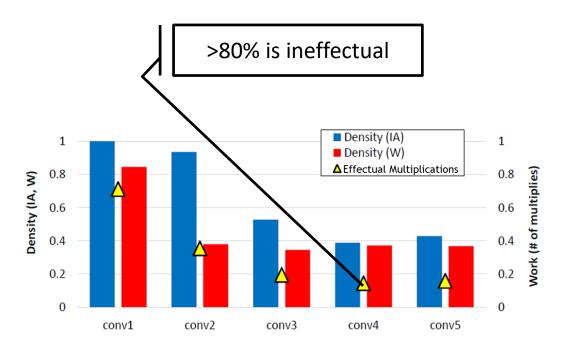
Workload Sparsity by Workload Domain

[Hedge, MICRO19]

 $0 \times \text{Anything} = 0$

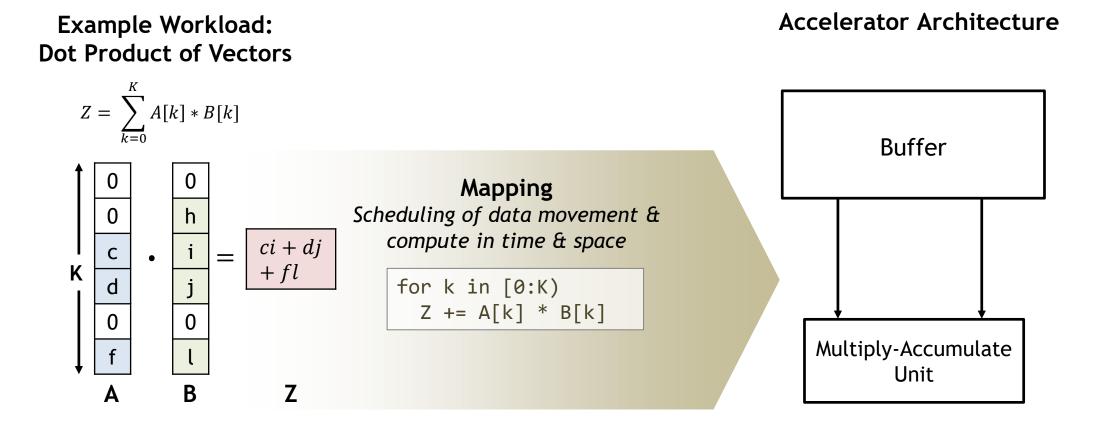
0 + Anything = Anything

Ineffectual Computations

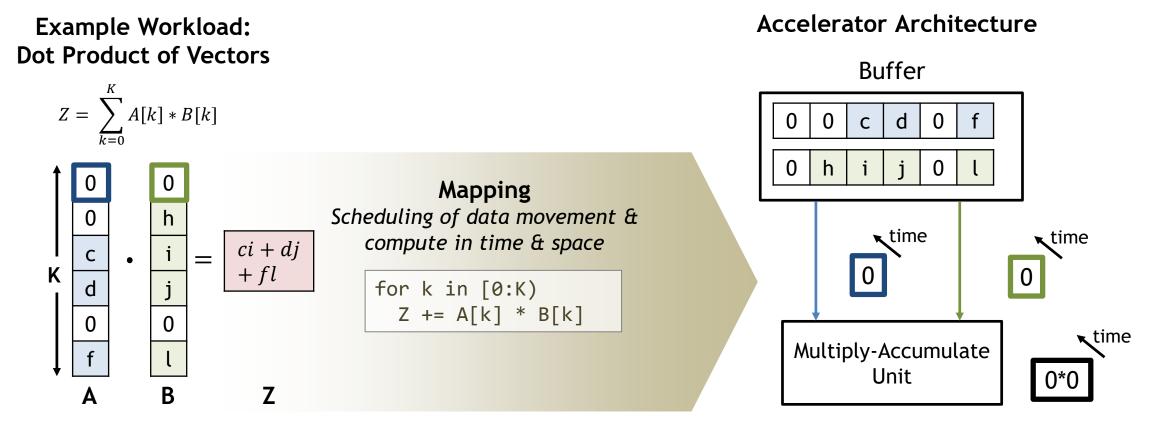


Pruned AlexNet Density [Parashar, ISCA17]

Processing Uncompressed Sparse Tensor Workloads



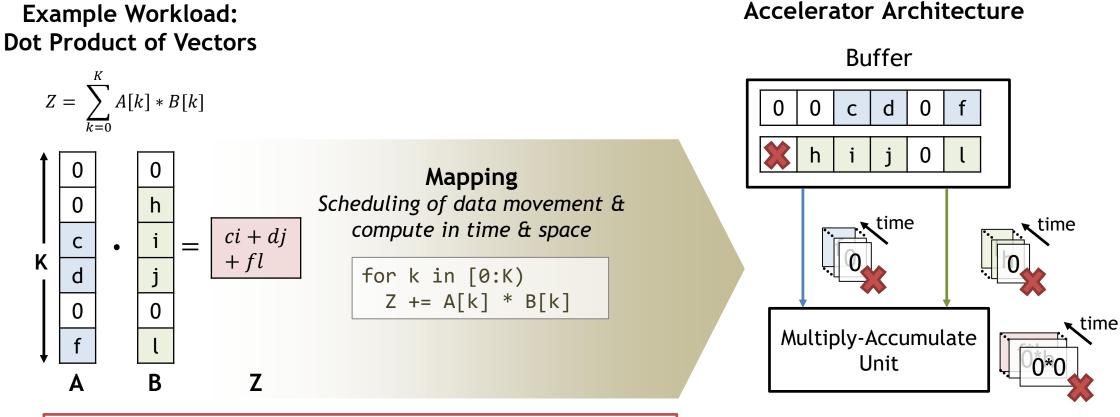
Processing Uncompressed Sparse Tensor Workloads



^{*}Z data movements not shown

4

Processing Uncompressed Sparse Tensor Workloads



Ineffectual computations introduce opportunities to exploit zero-based savings in hardware

*Z data movements not shown

5

Hardware Sparse Optimization Features

Format:

Choose tensor representations to save necessary storage spaces and energy associated zero accesses

Gating:

Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

Various Implementations Lead to Different Performance

Format:

Choose tensor representations to save necessary storage spaces and energy associated zero accesses

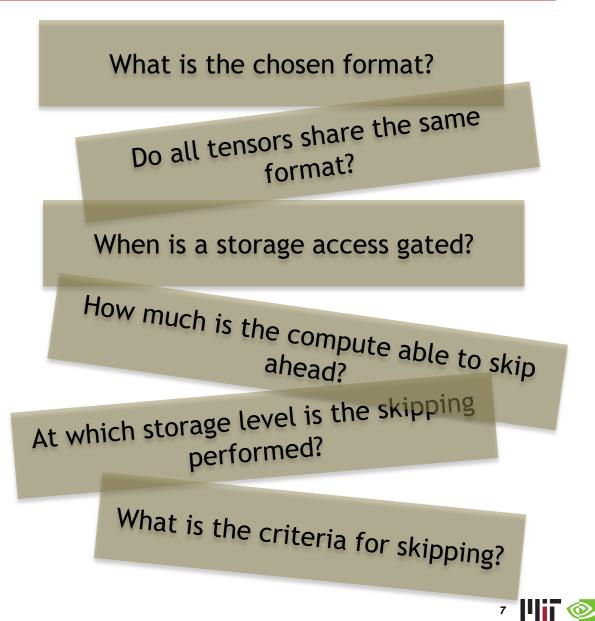
曲

Gating:

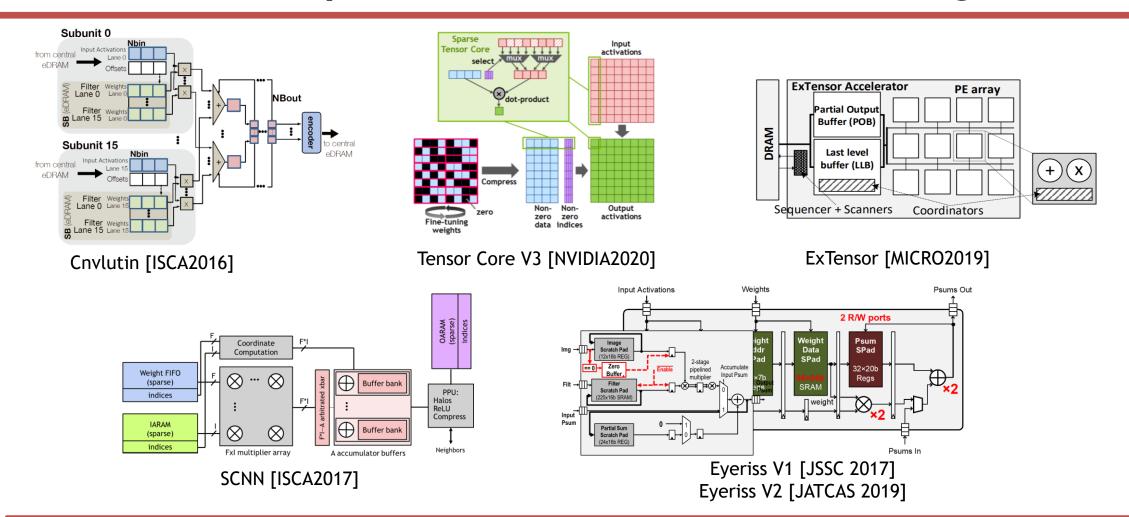
Explicitly eliminate ineffectual storage accesses and computes by letting the hardware unit staying idle for the cycle to save energy

Skipping:

Explicitly eliminate ineffectual storage accesses and computes by skipping the cycle to save energy and time

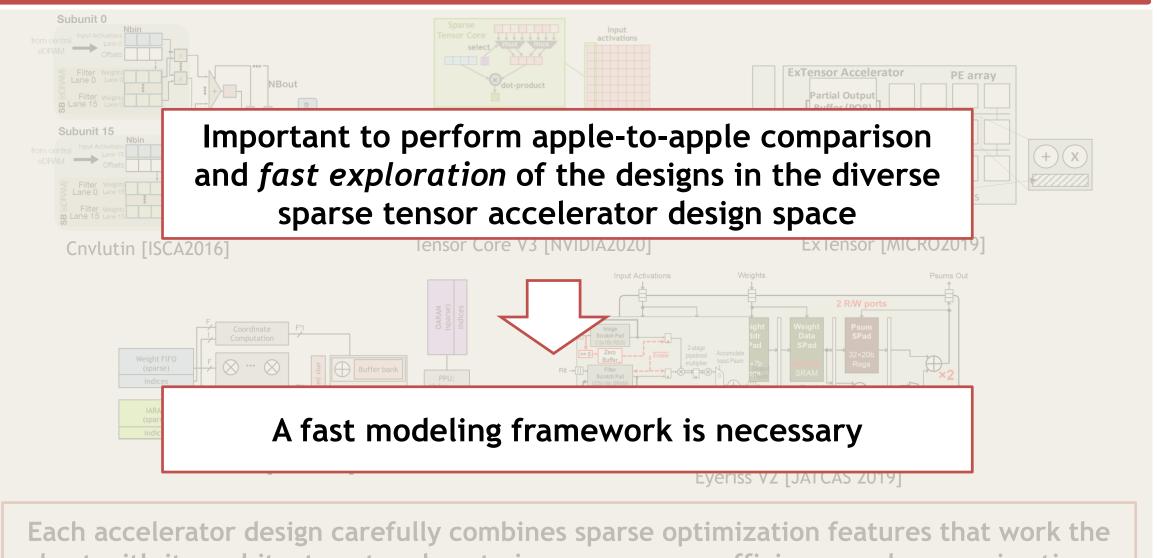


Diverse Sparse Tensor Accelerator Designs



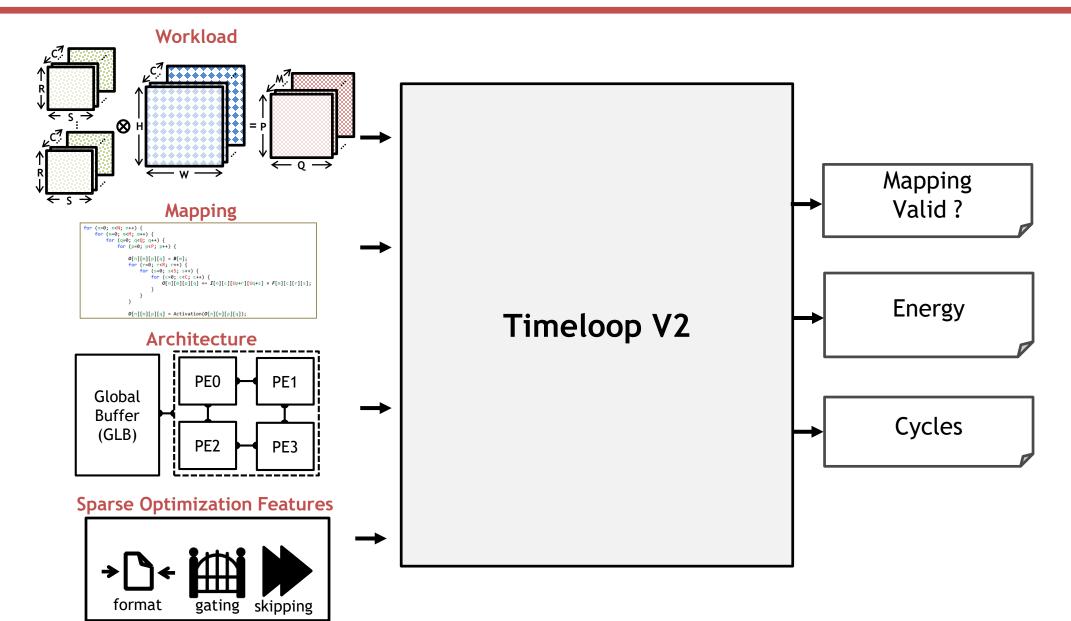
Each accelerator design carefully combines sparse optimization features that work the best with its architecture topology to improve energy efficiency and processing time

Diverse Sparse Tensor Accelerator Designs



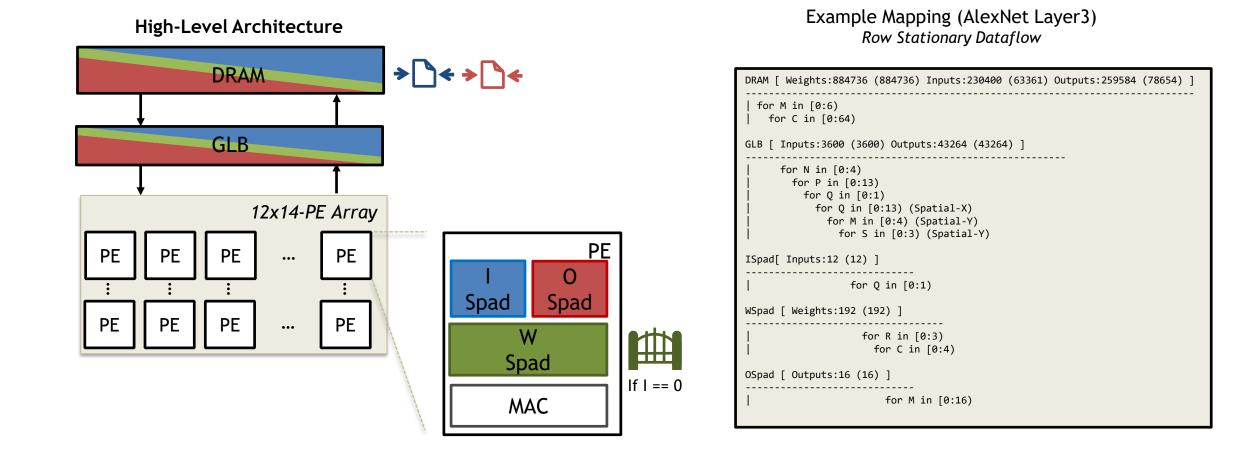
best with its architecture topology to improve energy efficiency and processing time

Analytical Sparse Tensor Accelerator Modeling



10

Validation on Eyeriss V1 [ISSCC 2016]

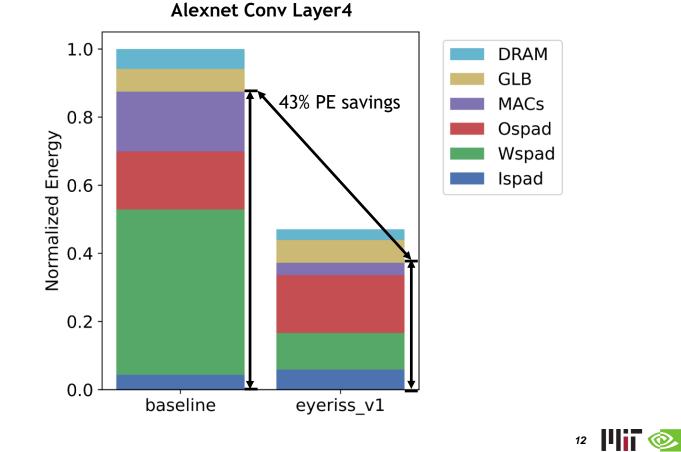


Validation on Eyeriss V1 [ISSCC 2016]

• DRAM compression ratio

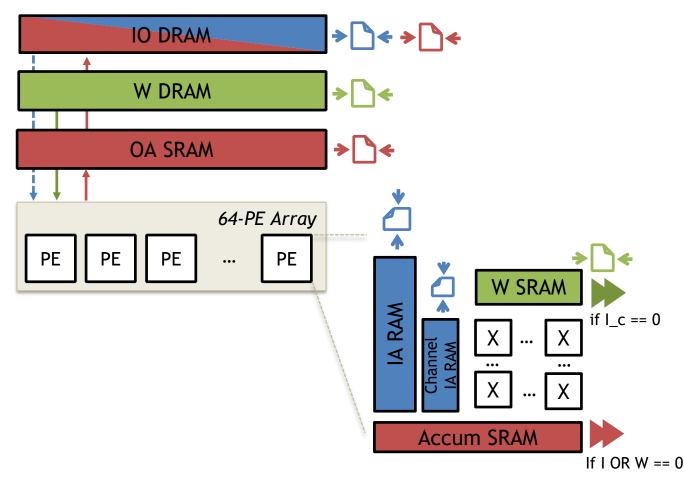
layer	Eyeriss	our work
1	1.2	1.24
2	1.4	1.37
3	1.7	1.68
4	1.8	1.86
5	1.9	1.93

- Normalized energy consumption with sparse optimization applied
 - 45% vs. 43% in our estimation, 96% accurate

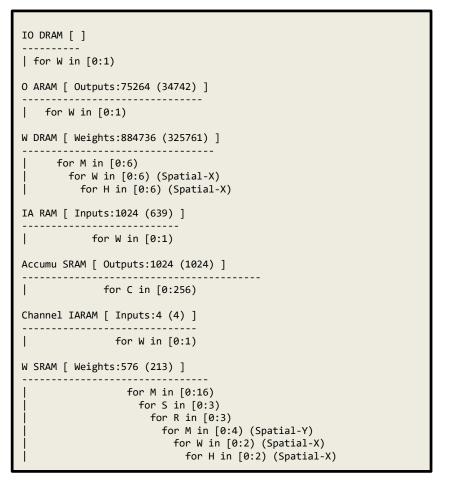


Validation on SCNN Architecture [ISCA2017]

High-Level Architecture

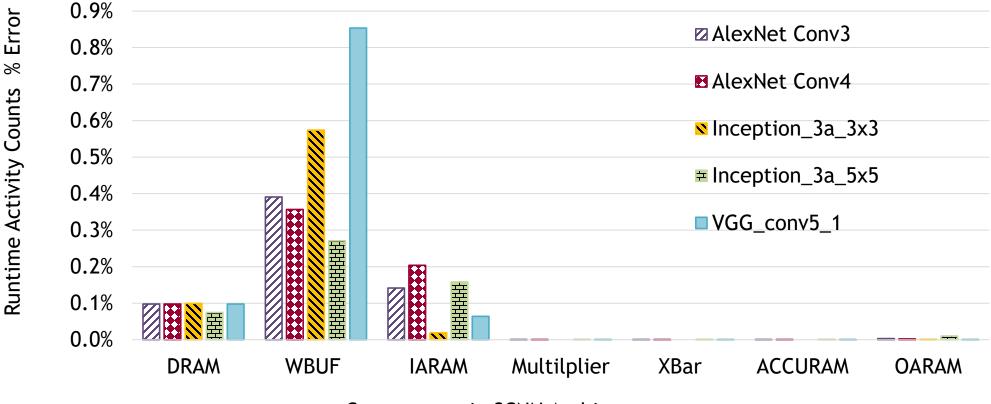


Example Mapping (AlexNet Layer3) Input Stationary Cartisian Product Dataflow



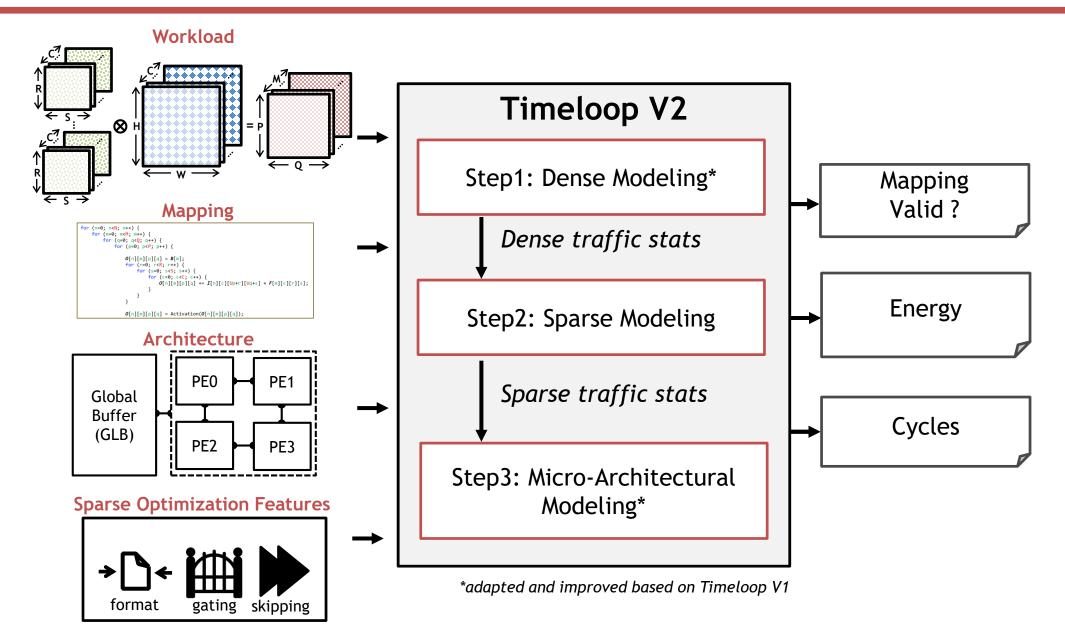
Validation on SCNN Architecture [ISCA2017]

Less than 1% error comparing to results generated by a custom SCNN simulator



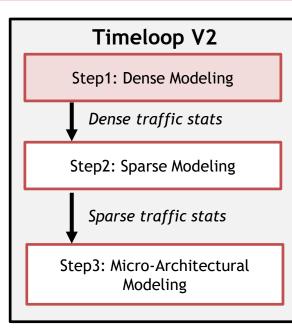
Components in SCNN Architecture

Proposed Analytical Sparse Tensor Accelerator Modeling



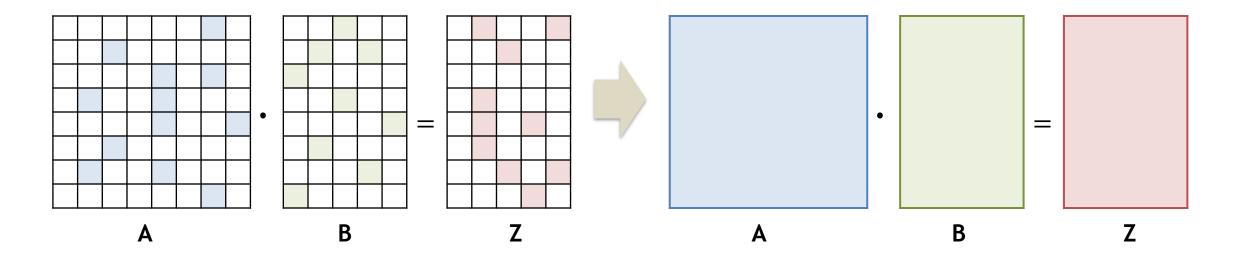
15

Analytical Modeling for Dense Accelerators



Abstracts Problem Instance Details Away

Fast analytical modeling does not examine the exact data in workloads

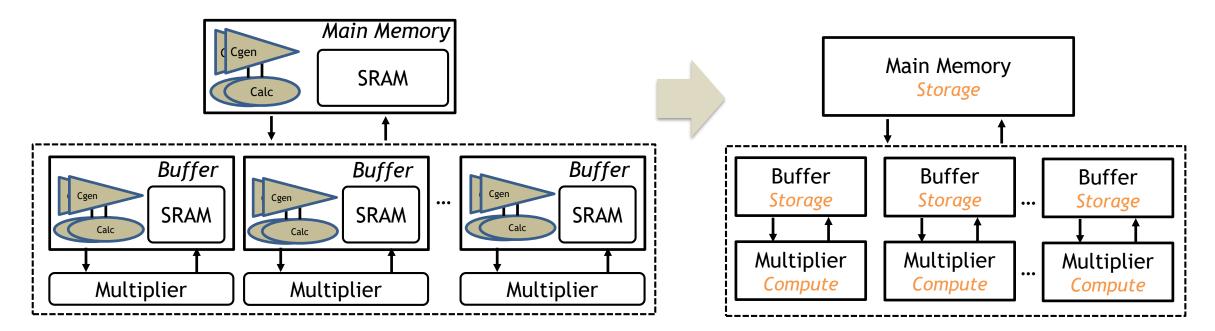


Exact Problem Instance

Problem Instance Shapes

Abstracts Architecture Details Away

Fast analytical modeling does not examine detailed architecture implementation

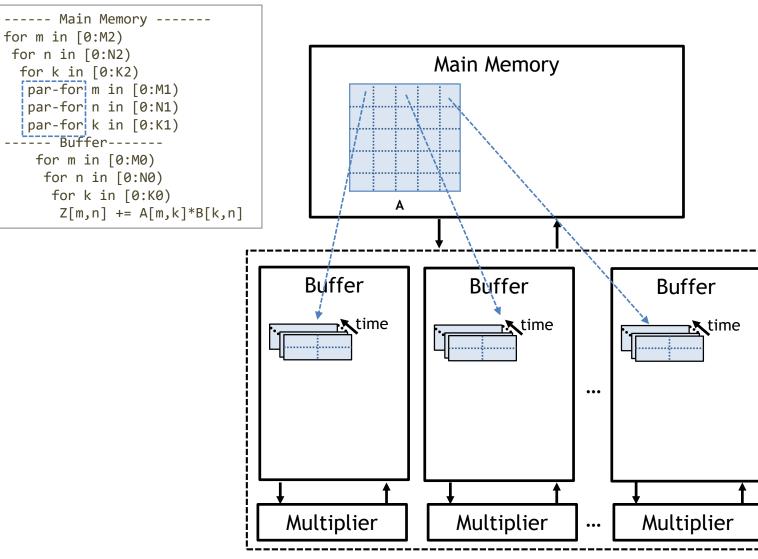


Detailed Architecture

Abstract Architecture Topology

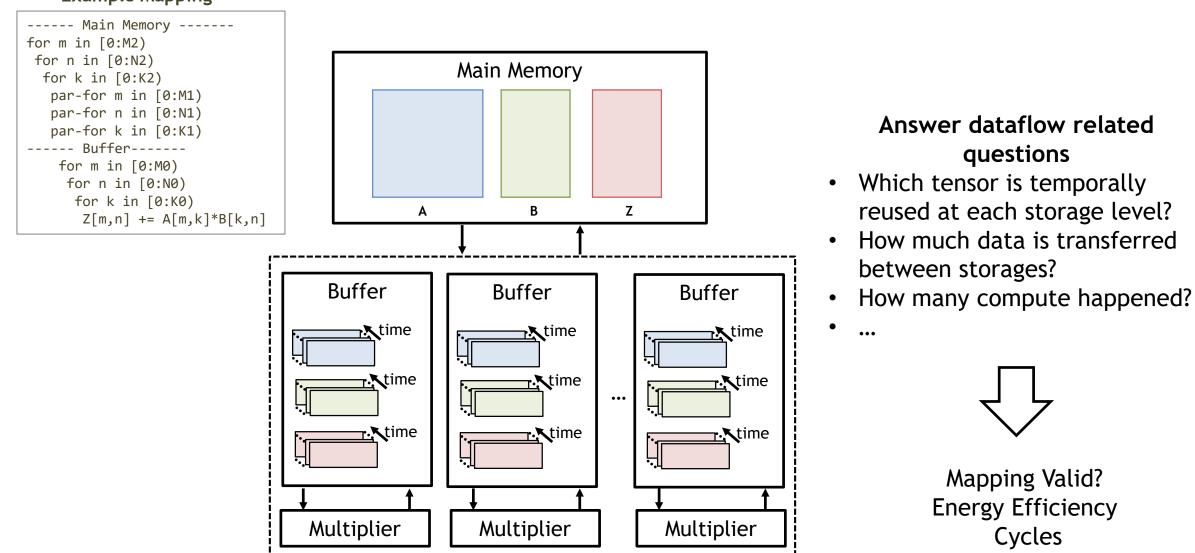
Dense Data Movement and Compute Analysis

Example Mapping



19

Dense Data Movement and Compute Analysis

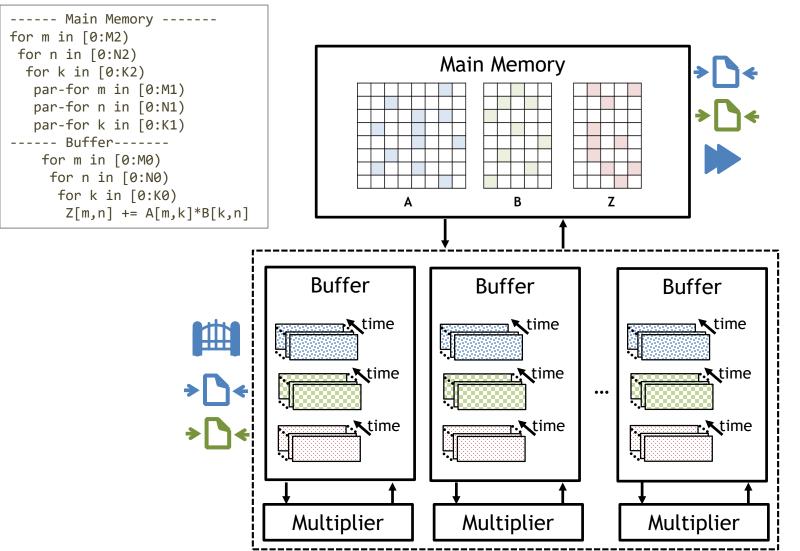


20

* More detailed explanation of the dense analysis can be found in Timeloop [Parashar, ISPASS 2019]

Sparse Accelerator Modeling is Data Dependent

Example Mapping



* More detailed explanation of the dense analysis can be found in Timeloop [Parashar, ISPASS 2019]

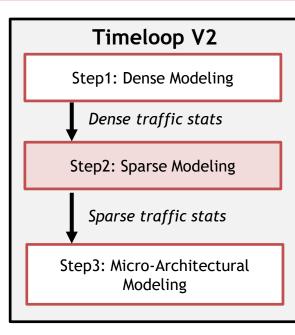
What is impact of sparse optimization features?

Answer dataflow related questions

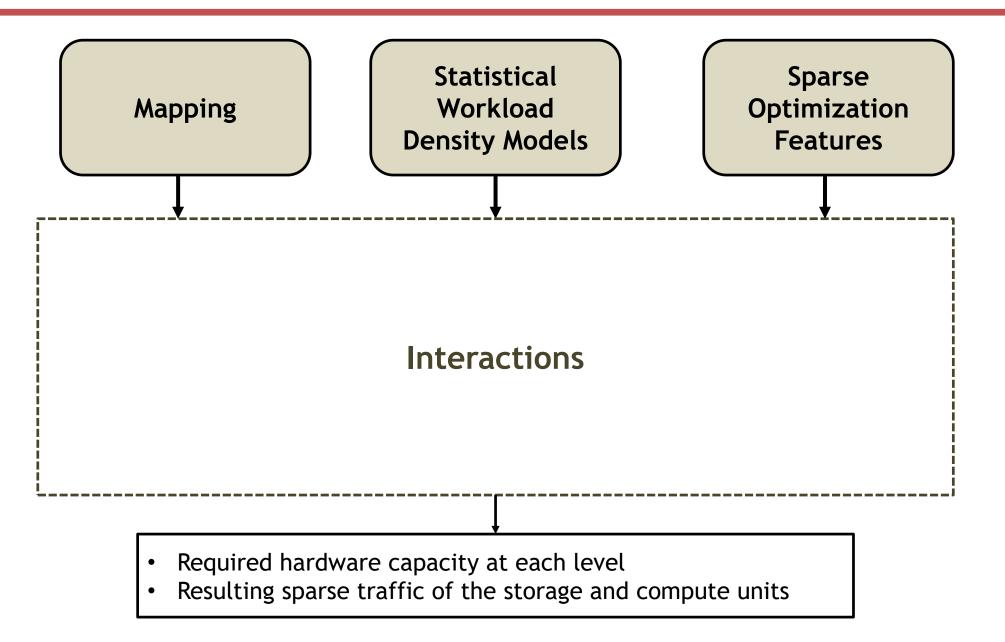
- Which tensor is temporally reused at each storage level?
- How much data is transferred between storages?
- How many compute happened?

Mapping Valid? Energy Efficiency Cycles

Proposed Sparse Tensor Accelerator Modeling Methodology



Specifications and Their Interactions

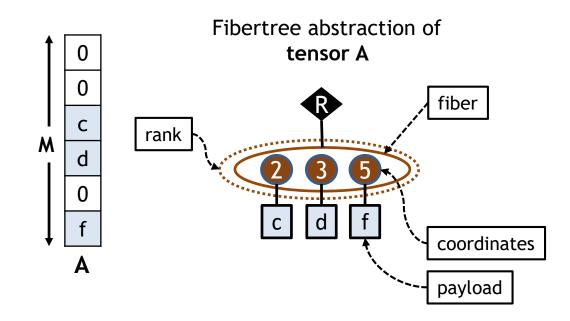


23

Proposed Sparse Tensor Accelerator Modeling Methodology

Interactions Between Mapping and Workload Density Models

Analysis Based on Fibertree-based Tensor Abstraction

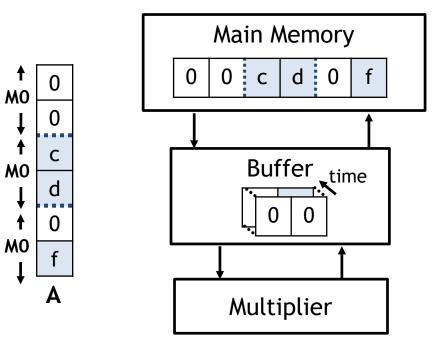


The format-agnostic nature of fibertree allows clean separation of the sparse nature of tensor and its format

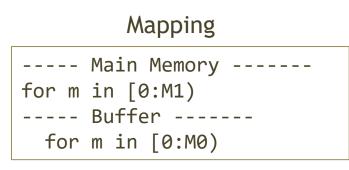
Decides the theoretical savings sparse optimization features can bring One of the implementation decisions to realize sparse optimization features

Mapping Introduces Tiled Tensors

Accelerator Architecture



M1

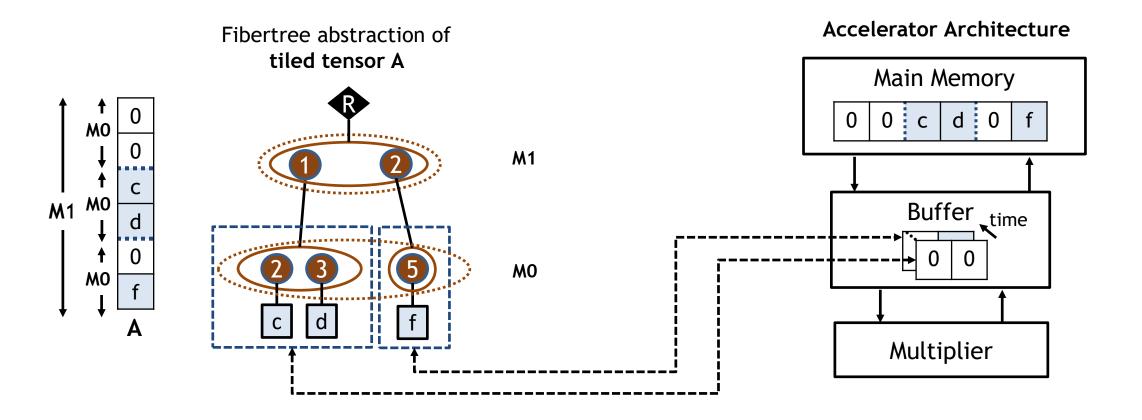


Mapping Introduces Tiled Tensors

Accelerator Architecture Main Memory Mapping d 0 0 С ----- Main Memory ------MO for m in [0:M1) 0 ----- Buffer ----for m in [0:M0) С Buffer _time MO **M**1 d MO Final questions to answer How much capacity is needed to store the subtile? How much data transfers are there between storages? **Multiplier**

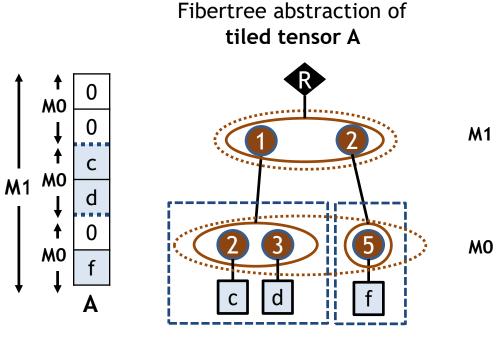
All dependent on the sparse nature of the (sub)tensor, i.e., how many nonzeros values in (sub)tensor

Fibertree Defines the Sparse Nature of Tensors



Characterizing the sparse nature of a (sub)tensor == Characterizing a fiber

Fibertree Defines the Sparse Nature of Tensors



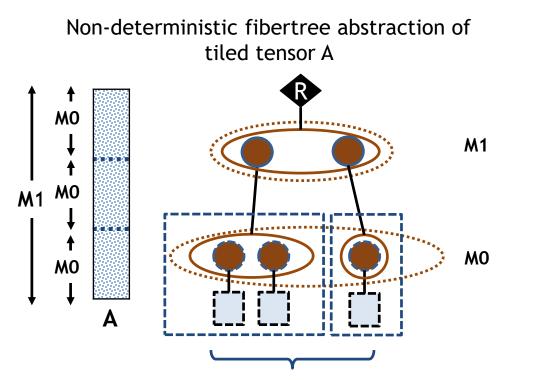
To characterize all the fibers in the tensor, we need to consider

- # of ranks
- # of fibers in each rank
- # of elements in each fiber, i.e., fiber occupancy

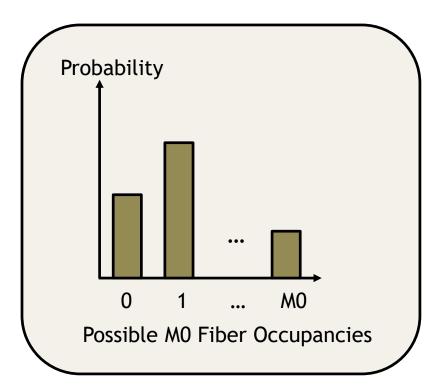
Deterministic when exact data can be examined

Statistical Density Models Necessary for Analytical Modeling

To ensure fast modeling speed, analytical modeling cannot examine the exact data in fibers



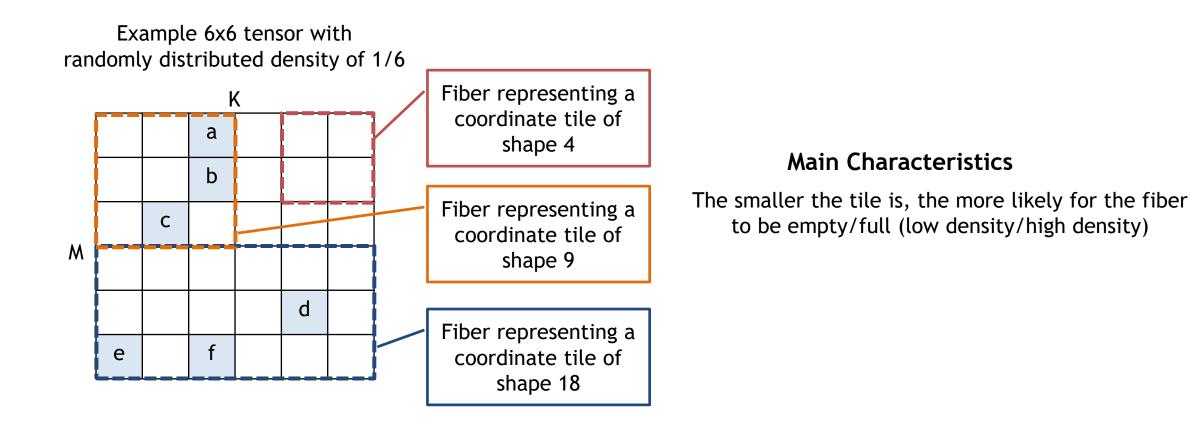
Without exact data, the **# of fibers** and **# of elements in each fiber** cannot be determined



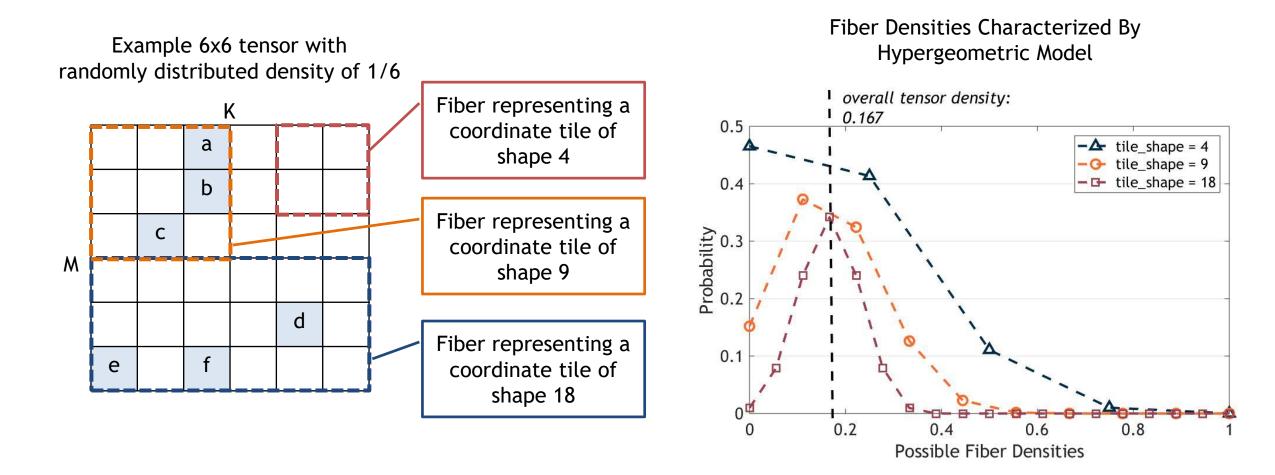
Probability distributions depend on the choice of statistical workload density model

Density Model 1: Hypergeometric Distribution

Describes the randomly distributed zeros in a tensor



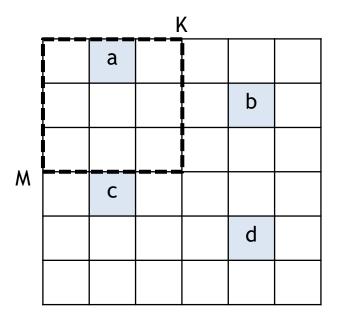
Density Model 1: Hypergeometric Distribution



Density Model 2: Fixed-Structured Distribution

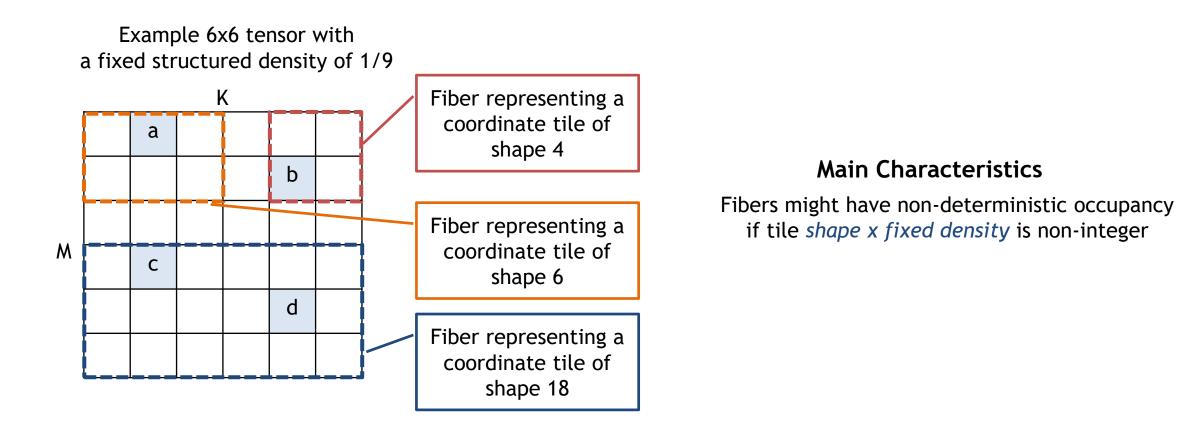
Describes a structured distribution of zeros in a tensor, where all tiles in the tensor have a shared fixed density

Example 6x6 tensor with a fixed structured density of 1/9



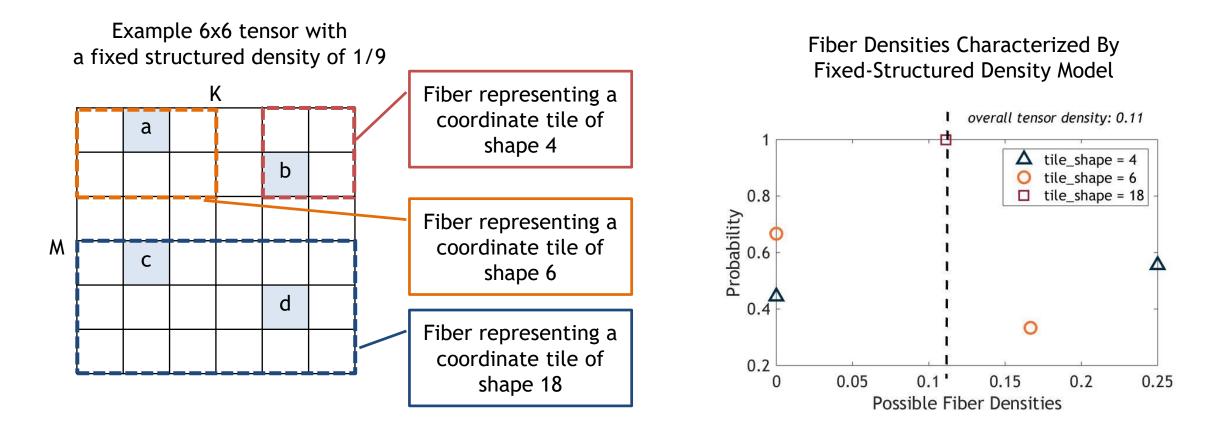
Density Model 2: Fixed-Structured Distribution

Describes a structured distribution of zeros in a tensor, where all tiles in the tensor have a shared fixed density

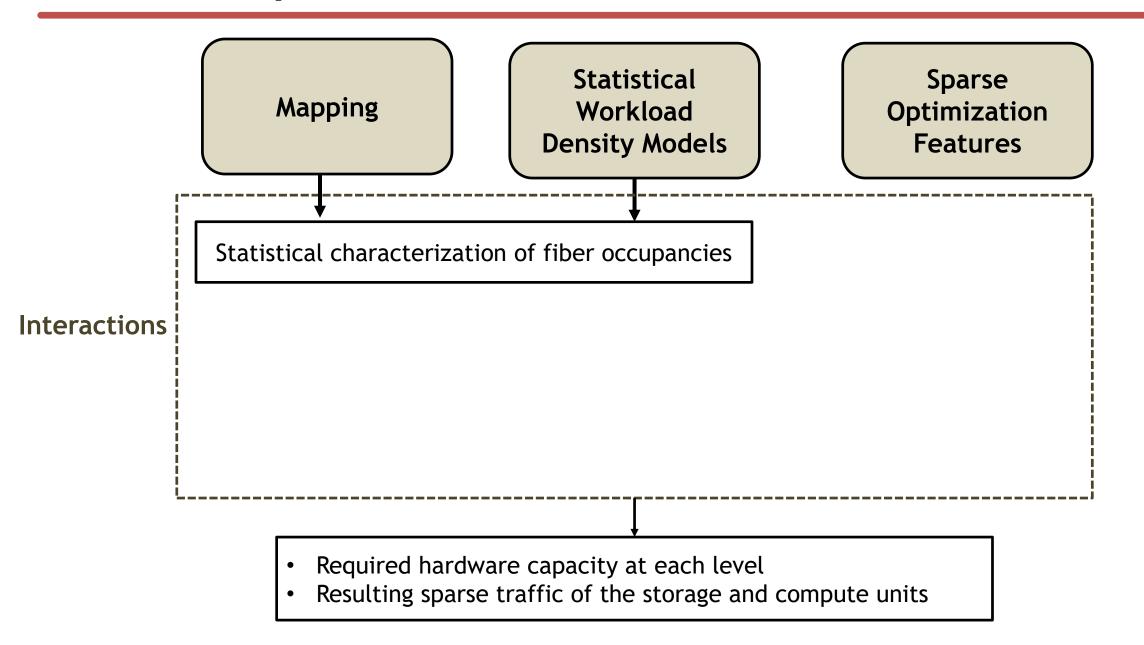


Density Model 2: Fixed-Structured Distribution

Non-integer occupancy represented as weighted sum of integer possible occupancies



Specifications and Their Interactions

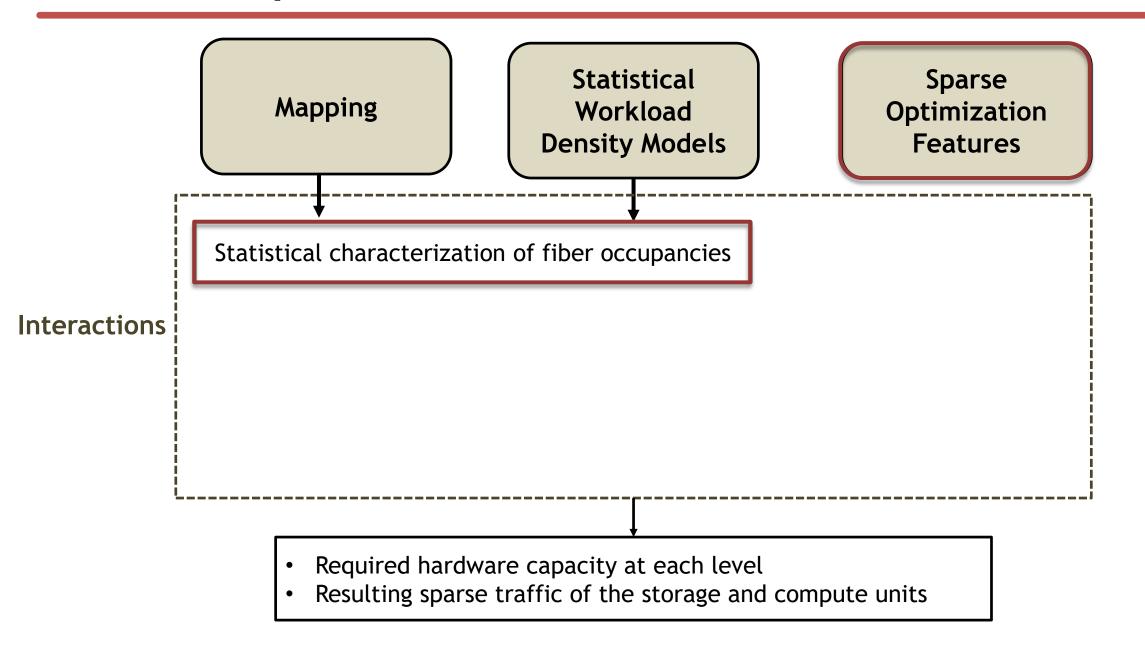


36

Proposed Sparse Tensor Accelerator Modeling Methodology

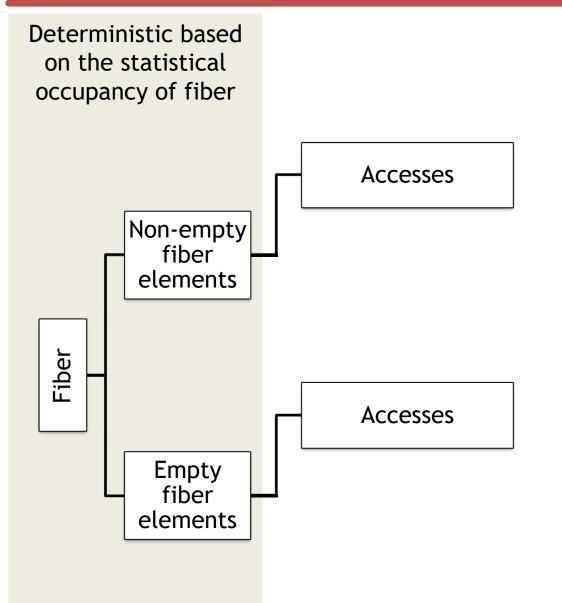
Sparse Optimization Feature Impact Modeling

Specifications and Their Interactions

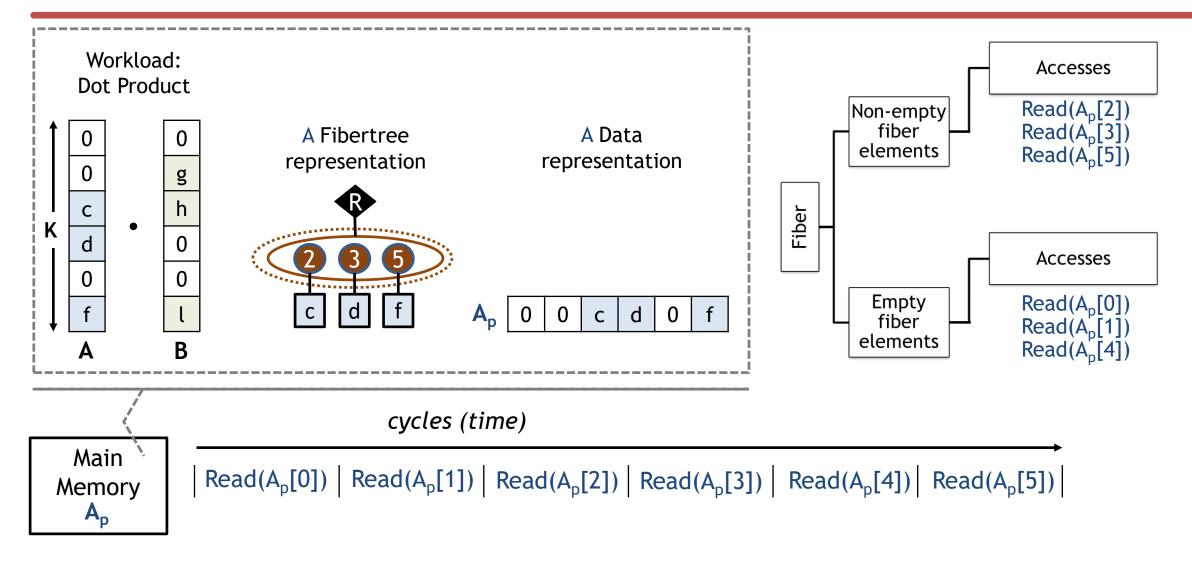


38

Baseline Storage Access Types Related to a Fiber

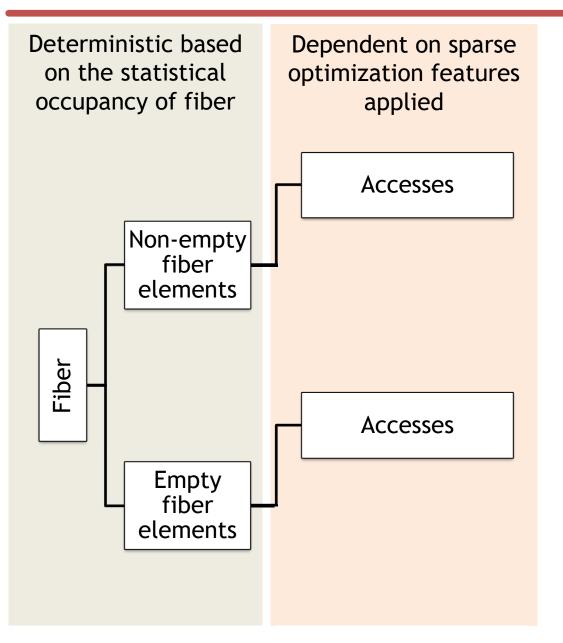


Baseline A Tensor Accesses in A Dot Product Workload

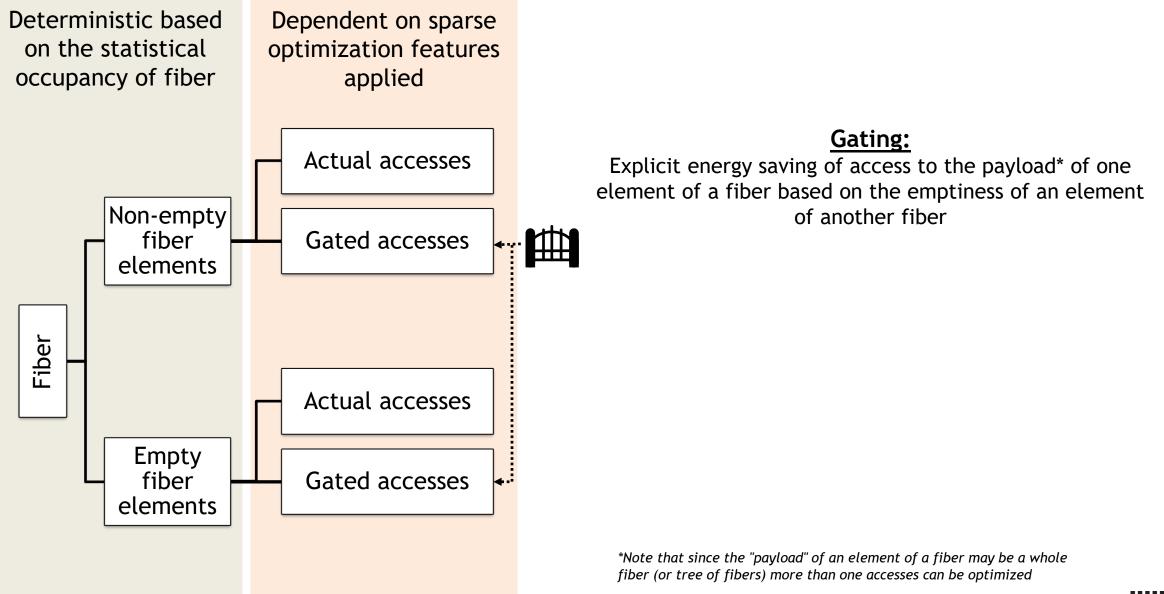


Total: 6 actual accesses, 6 cycles

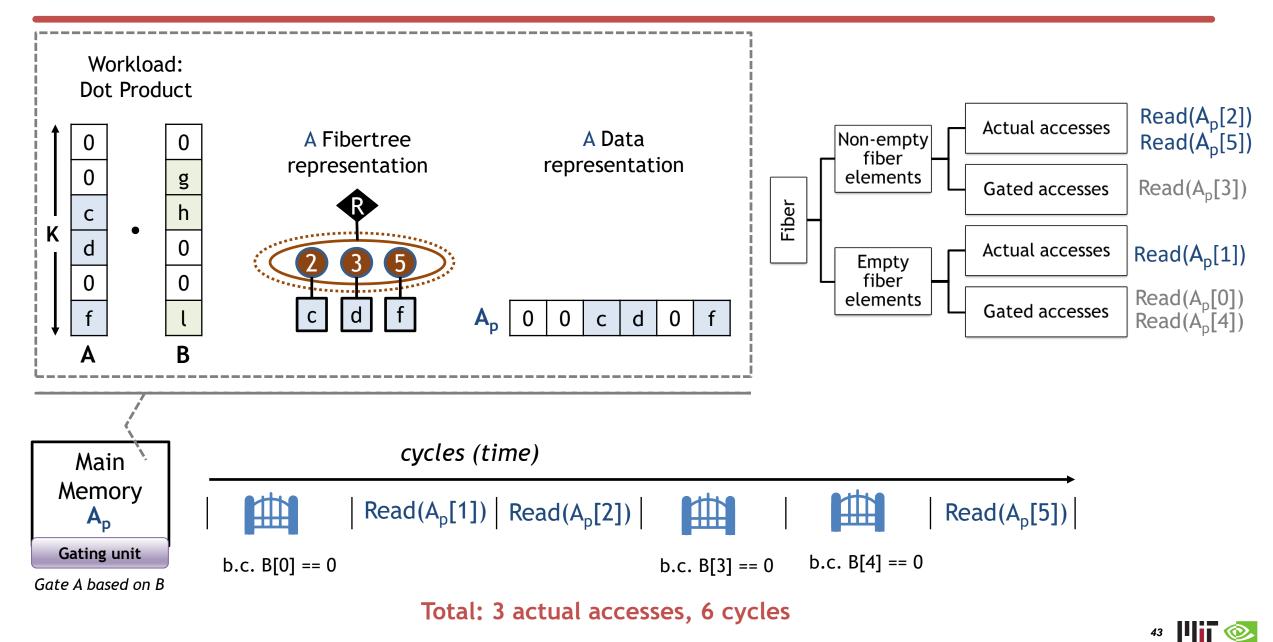
Sparse Optimization Features Reduces Actual Accesses



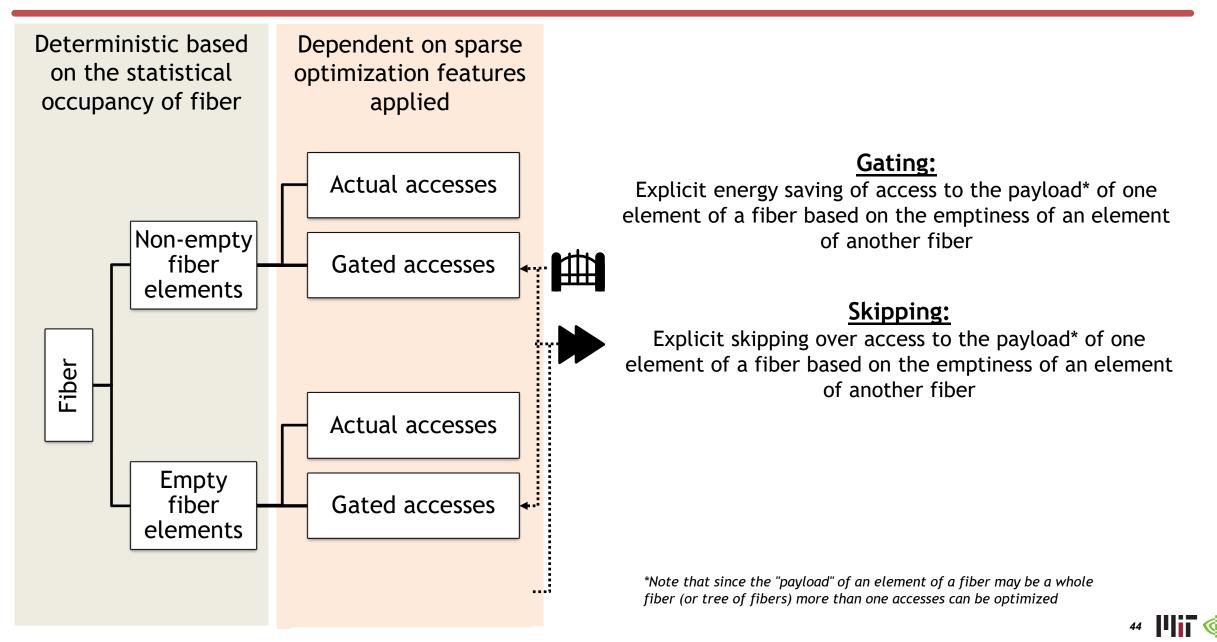
Gating Leads to Gated Accesses



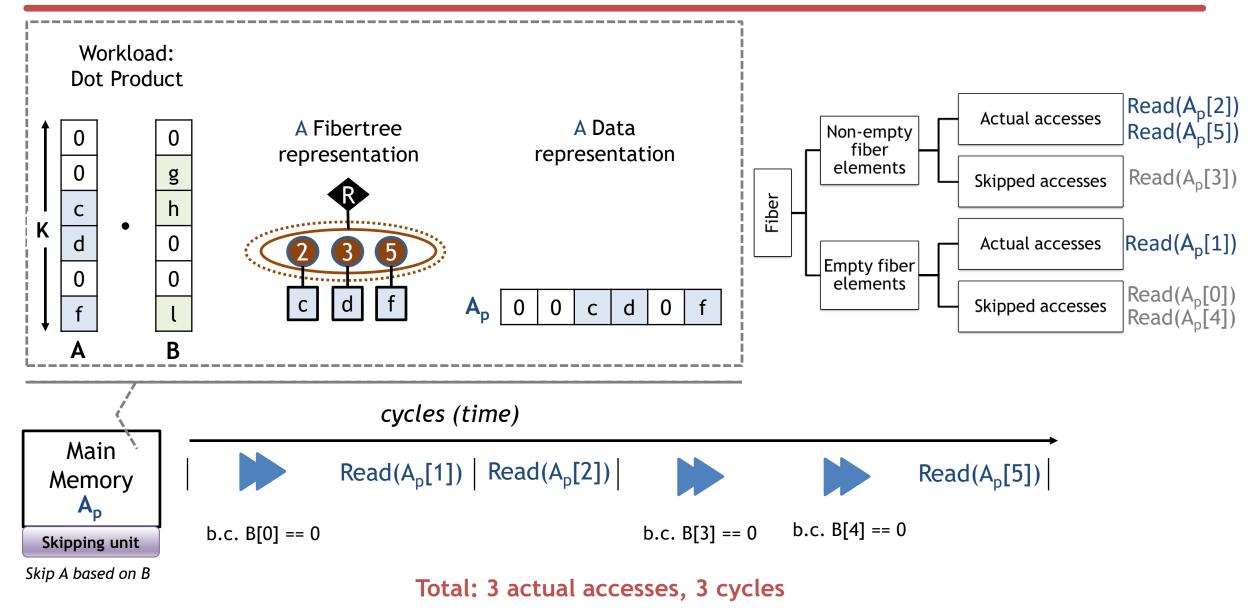
Zero-Gated A Tensor Accesses in A Dot Product Workload



Skipping Leads to Skipped Accesses



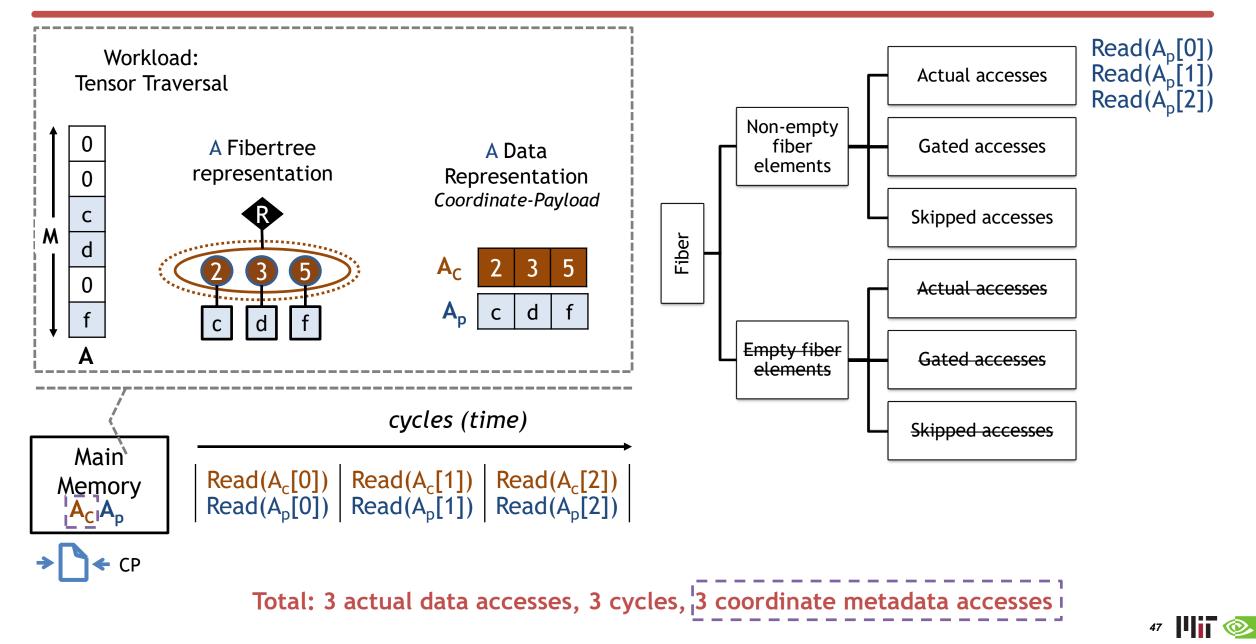
Zero-Skipped A Tensor Accesses in A Dot Product Workload



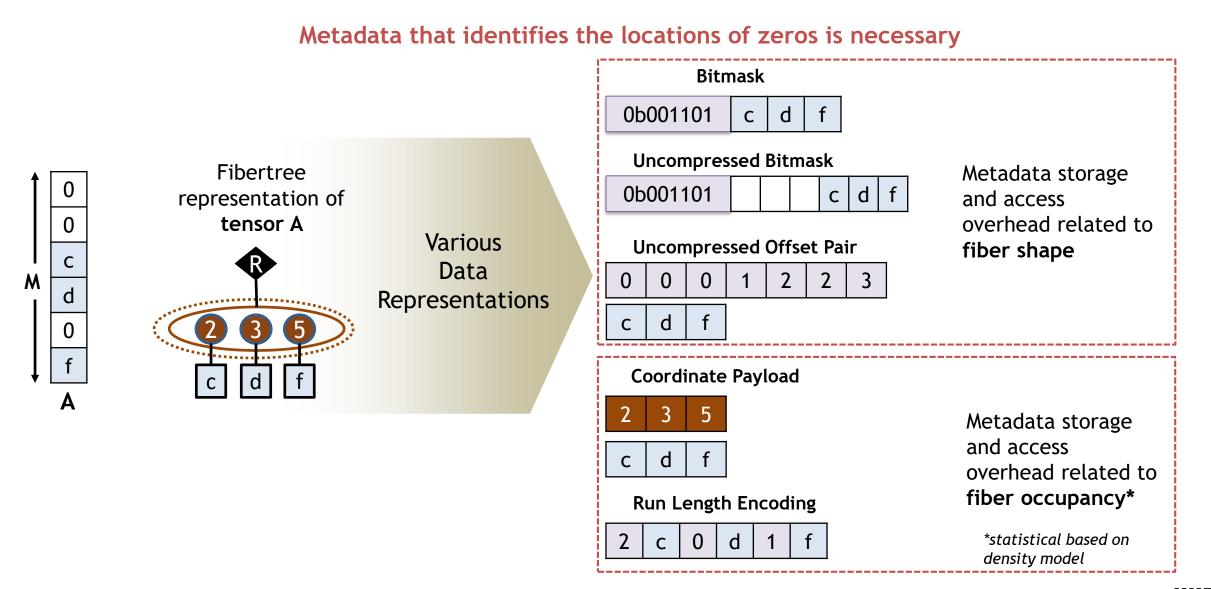
Compression Eliminates Accesses to Empty Elements



A Tensor Traversal with Coordinate Payload Format



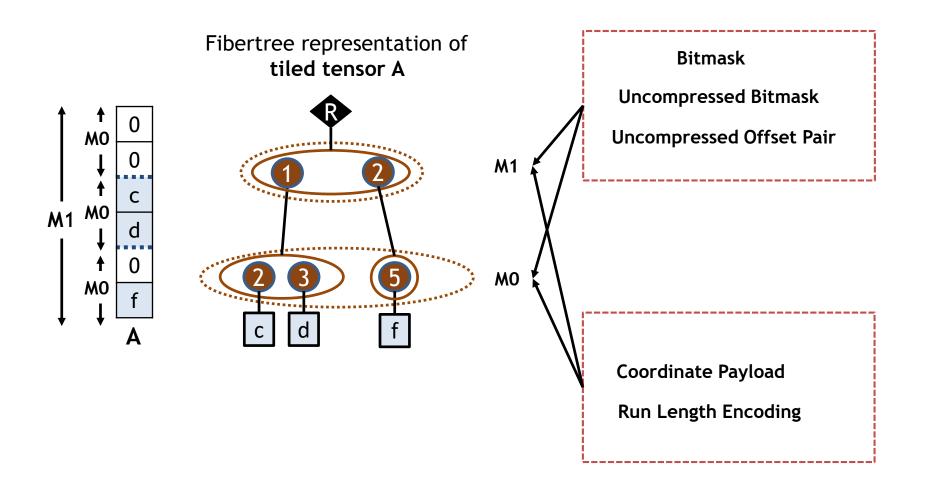
Format Choice Leads to Metadata Overhead



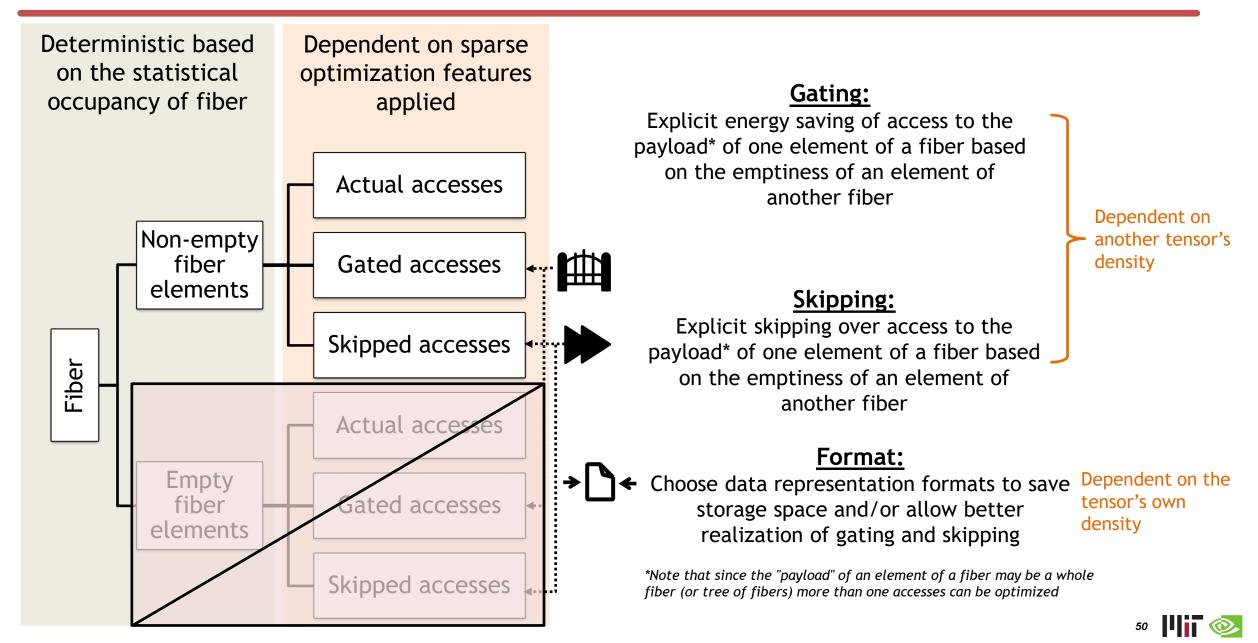
48

Multi-Rank Metadata Overhead

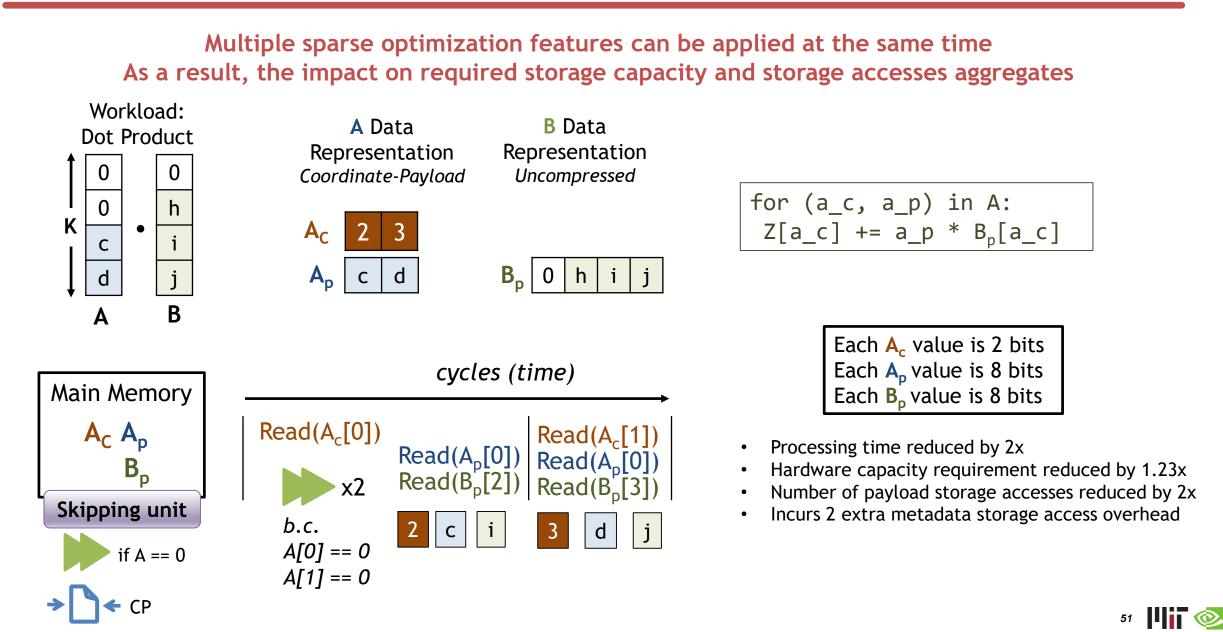
Per-Rank Occupancy and Access Analysis Allows Modeling of Arbitrary Compression Format



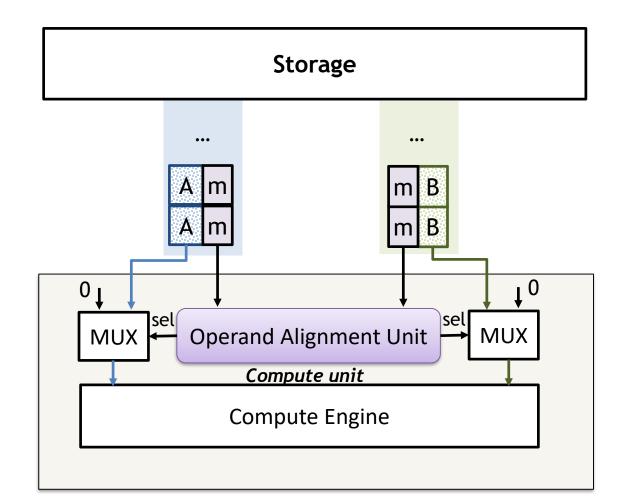
Impact Defined by Fibers in Different Tensors



Interplay Between Different Sparse Optimization Features

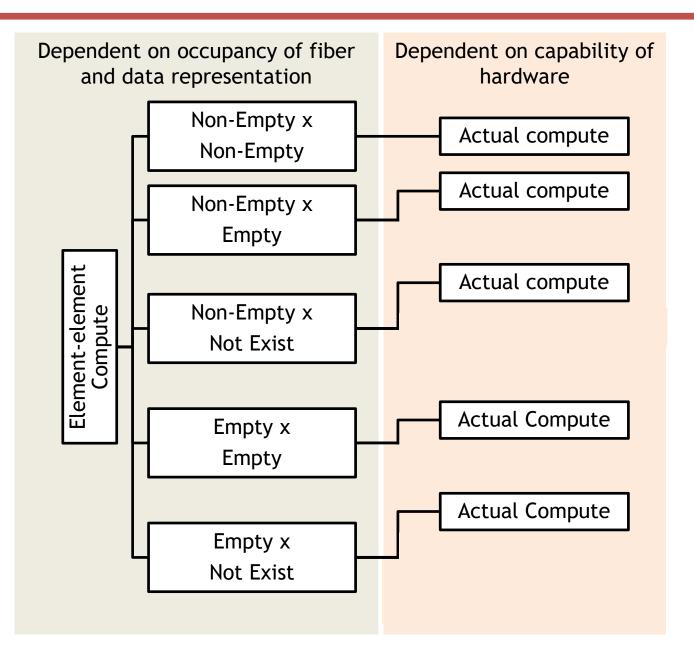


Baseline Compute Unit Hardware Setup



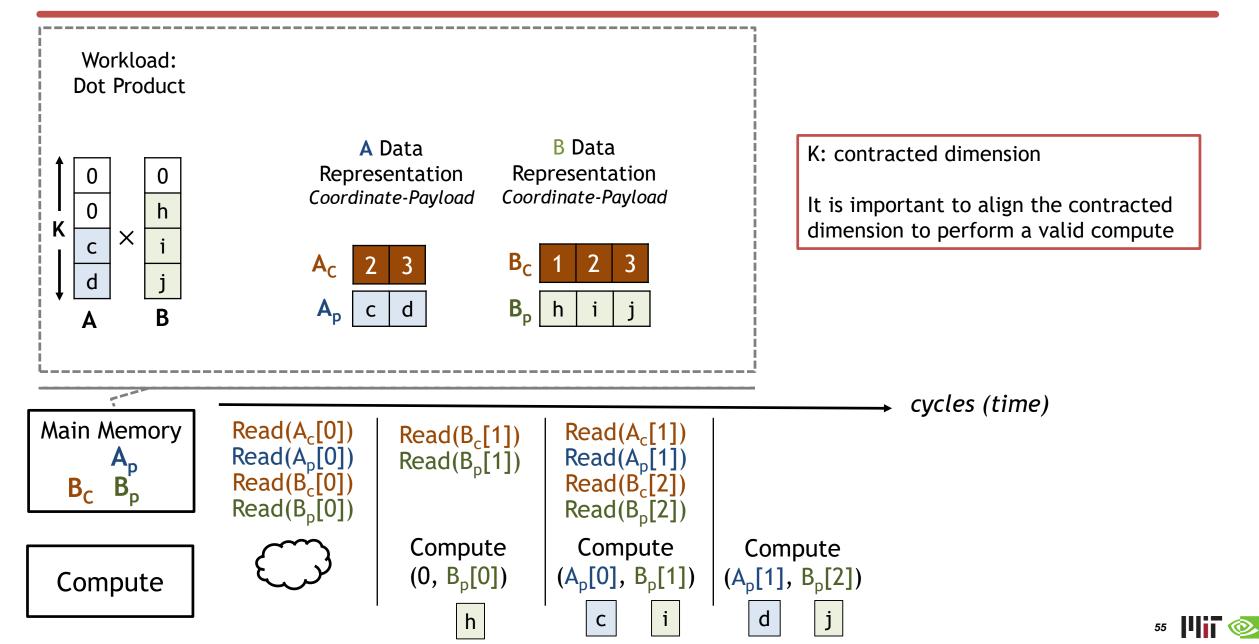
Operand alignment unit checks operand metadata and decides whether the incoming operands correspond to each other

Sparse Optimization Features Lead to Different Types of Computes

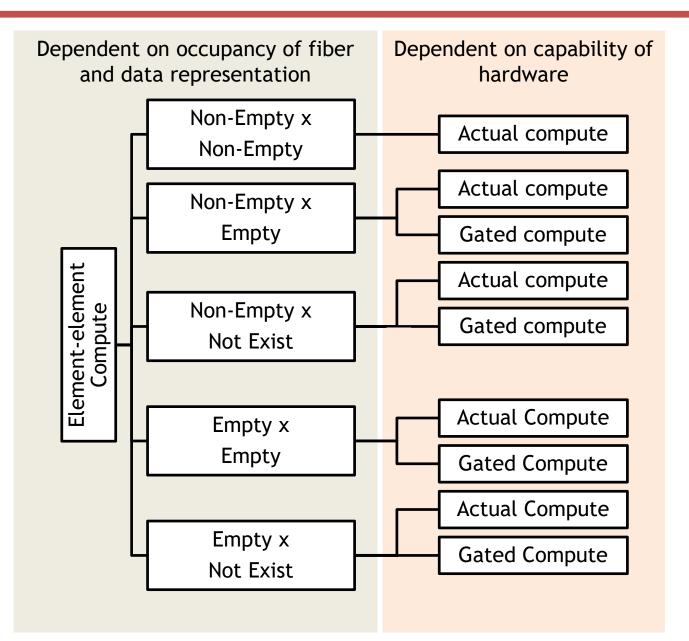


54

Baseline Compute Unit Working on Dot Product



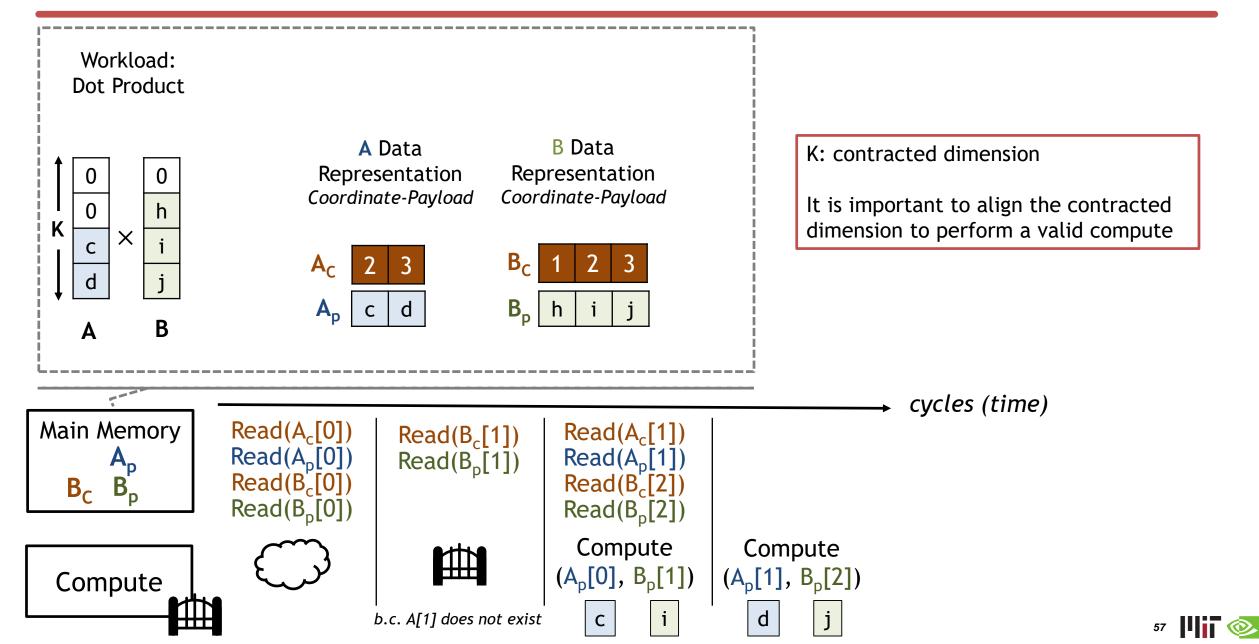
Sparse Optimization Features Lead to Different Types of Computes



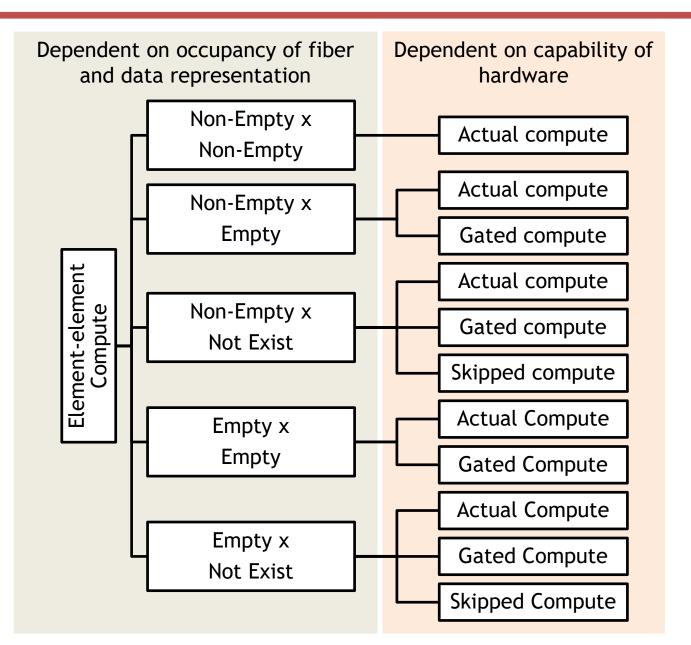
Gating:

Explicit energy saving of compute when one of the payloads of operand elements is empty (i.e., compute engine recognizing zero operands)

Gated Compute Unit Working on Dot Product



Sparse Optimization Features Lead to Different Types of Computes



Gating:

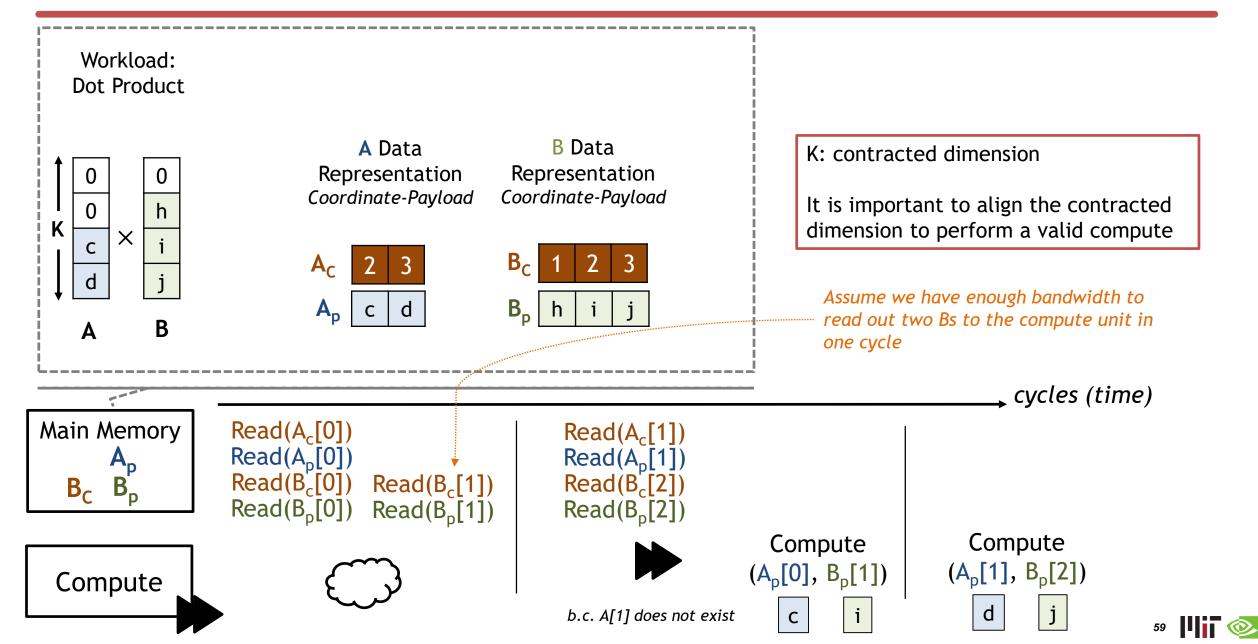
Explicit energy saving of compute when one of the payloads of operand elements is empty (i.e., compute engine recognizing zero operands)

Skipping:

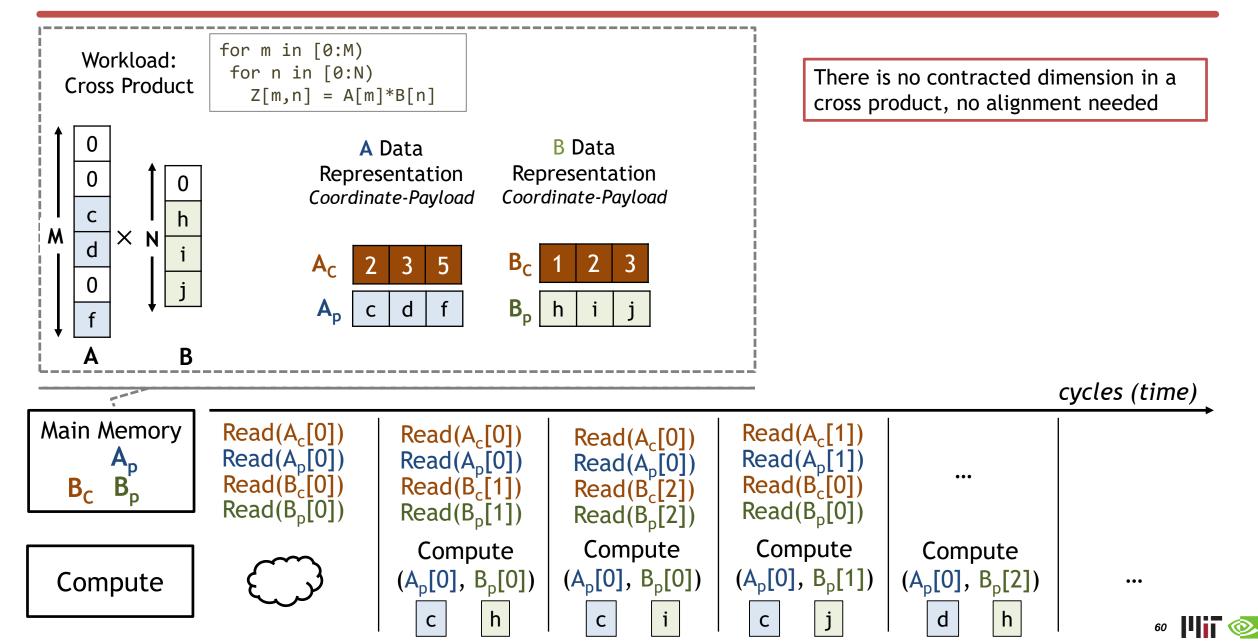
Explicit skipping over a compute when one of the payloads of operand elements does not exist (i.e., look-up based operand alignment)

Note: skipping cannot skip over empty elements

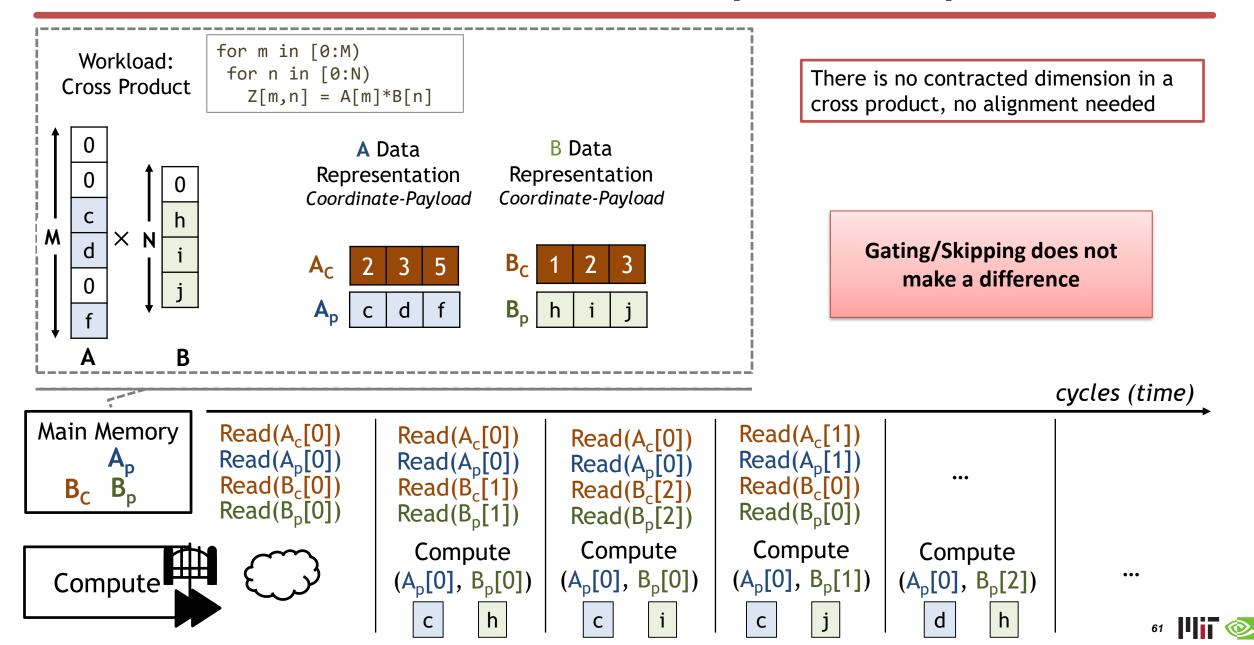
Skipped Compute Unit Working on Dot Product



Baseline Compute Unit Working on Cross Product



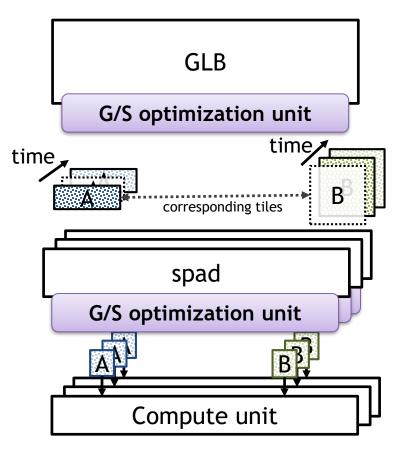
Interactions between Problem Spec and Opt. Features



More Modeling Capabilities

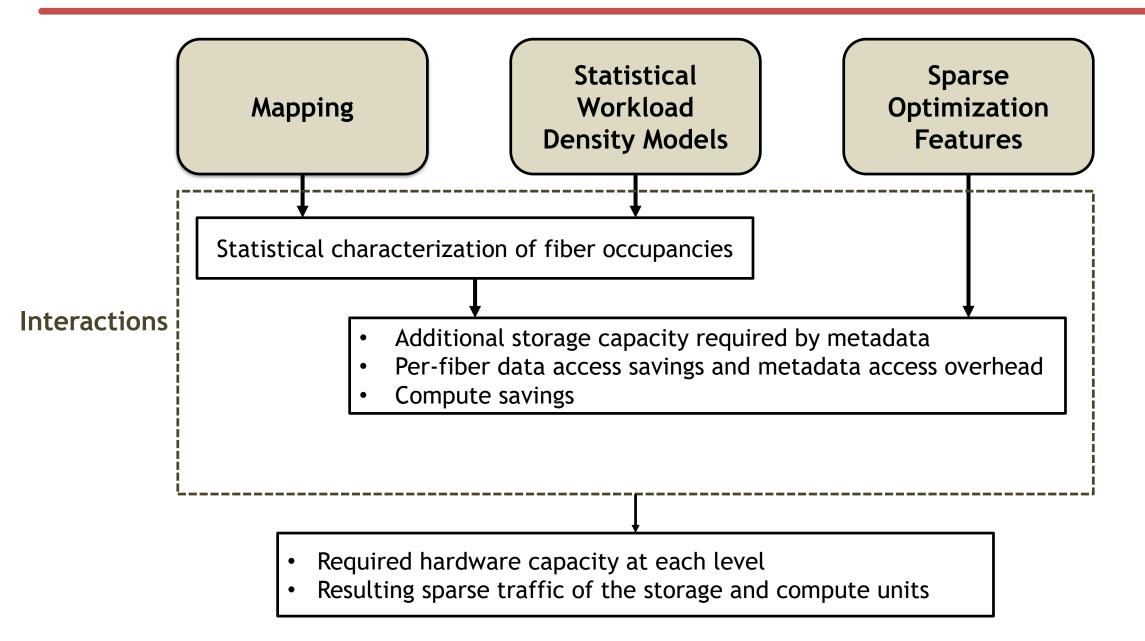
- Zero-Gating and Zero-Skipping at intermediate storage levels
 - Propagation Impact to lower storage and compute levels
 - Choose gated/skipped tensor based on mapping
- Multi-rank compression formats
 - Interaction between compression formats and mapping
 - Compression with flattened ranks (important for deep neural network workloads)
 - Decompression at inner storage levels

More Realistic Multi-Level Architecture

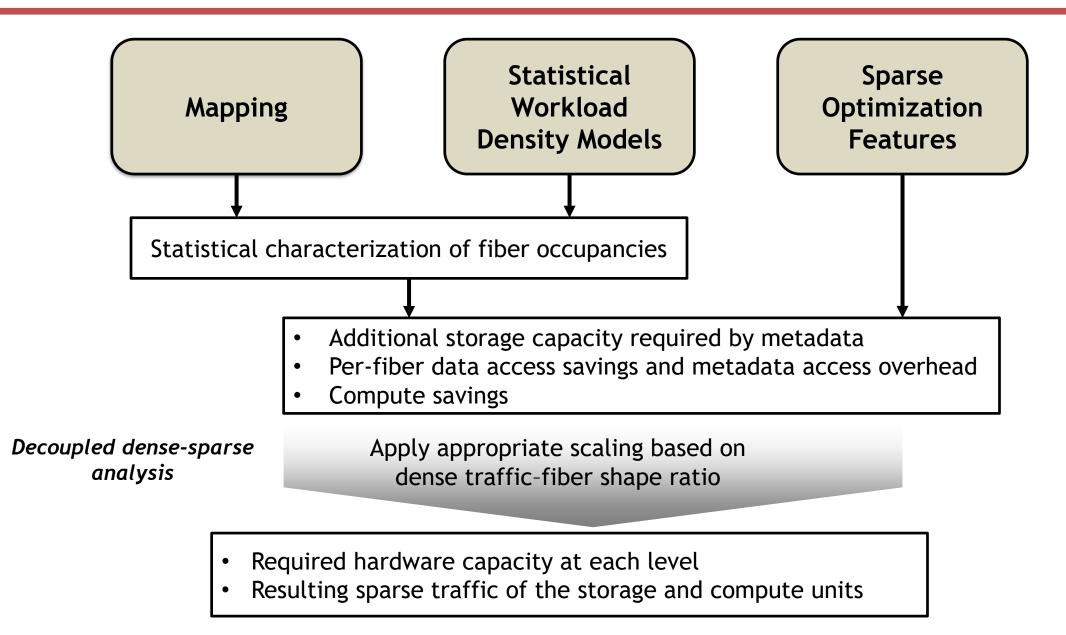


62

Specifications and Their Interactions



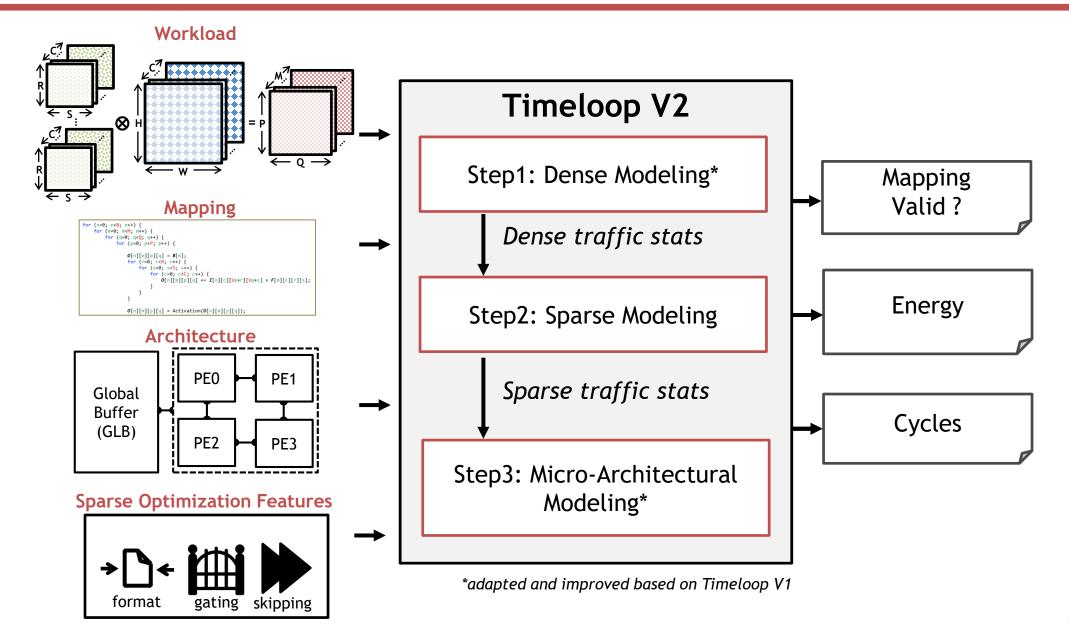
Specifications and Their Interactions



64

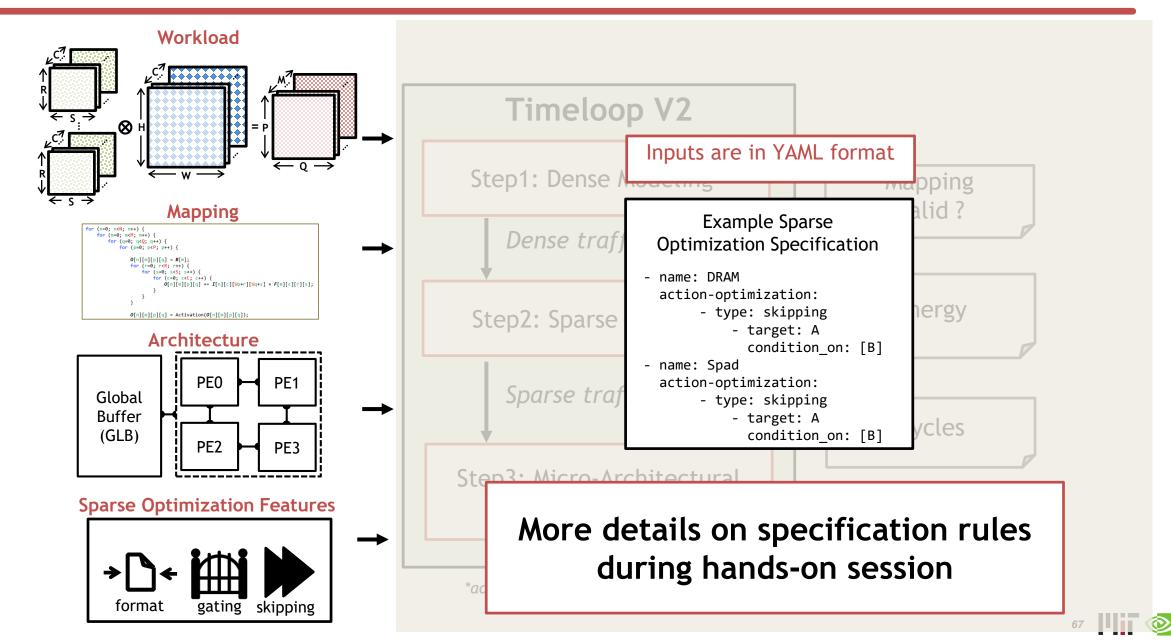
Timeloop V2 (a.k.a. Sparseloop) Infrastructure

Timeloop V2

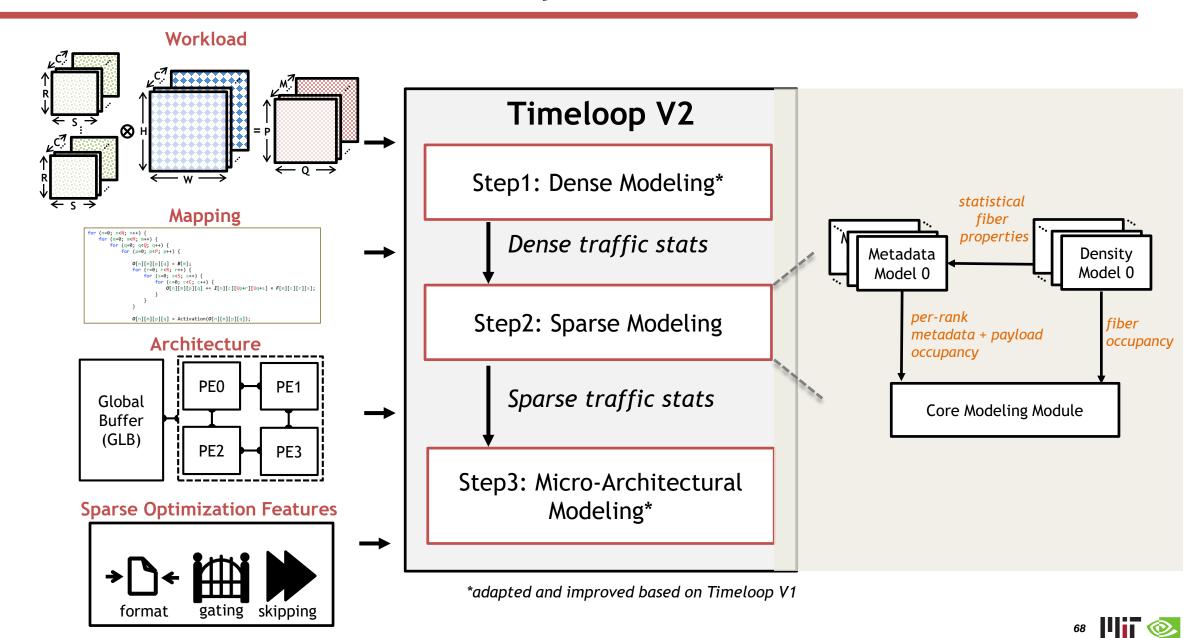


66

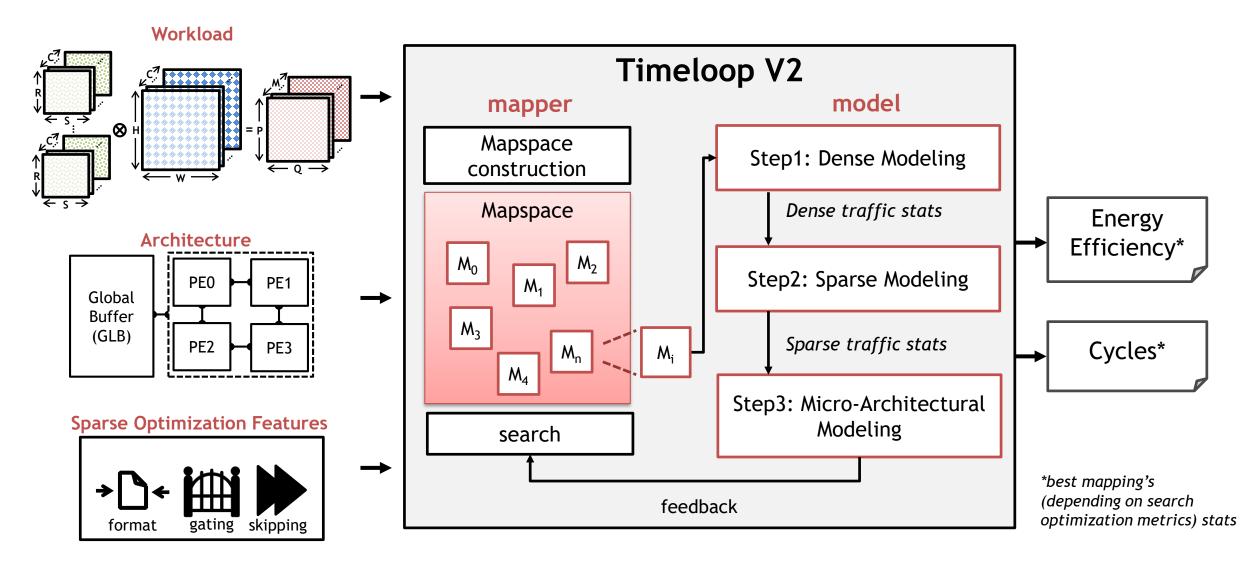
Timeloop V2 Inputs



Modularized Density and Format Models

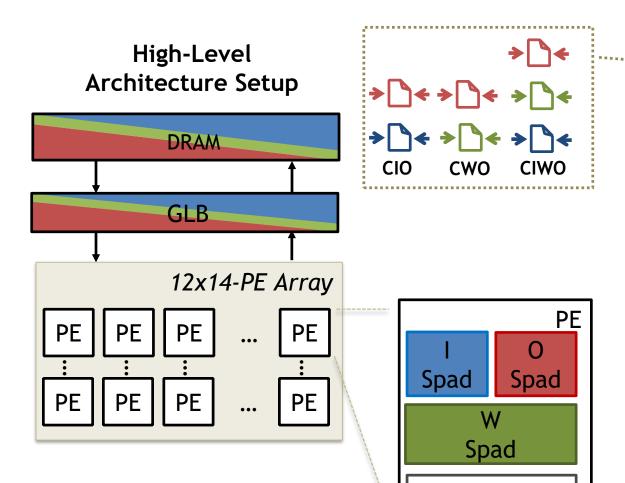


Timeloop V2 Mapspace Exploration



Case Studies

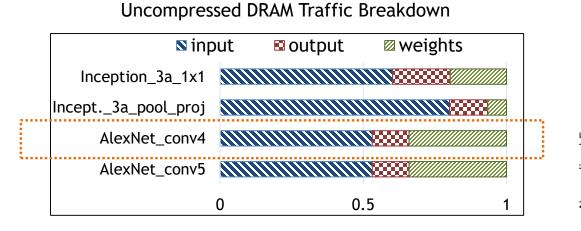
Explore different sparse optimization features



MAC

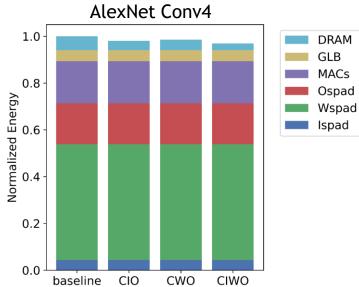
What are some important factors that define the impact of compressed data representation format?

Uncompressed Traffic Breakdown vs. Compression Savings

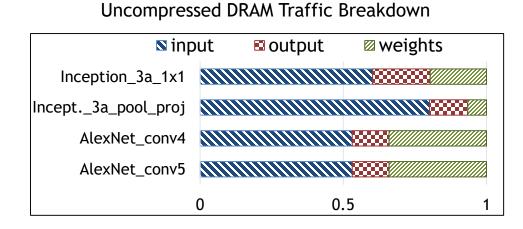


The tensor that dominates uncompressed traffic introduces more savings when compressed

Is that true? No



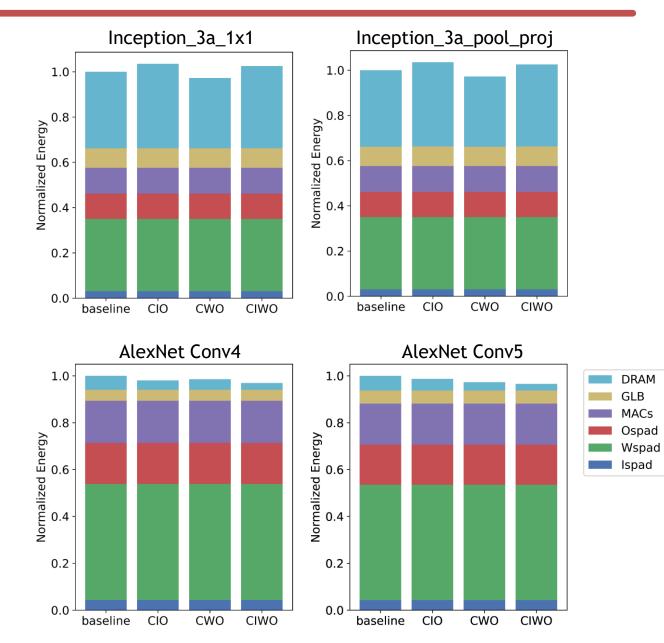
Tensor Densities Play an Important Role



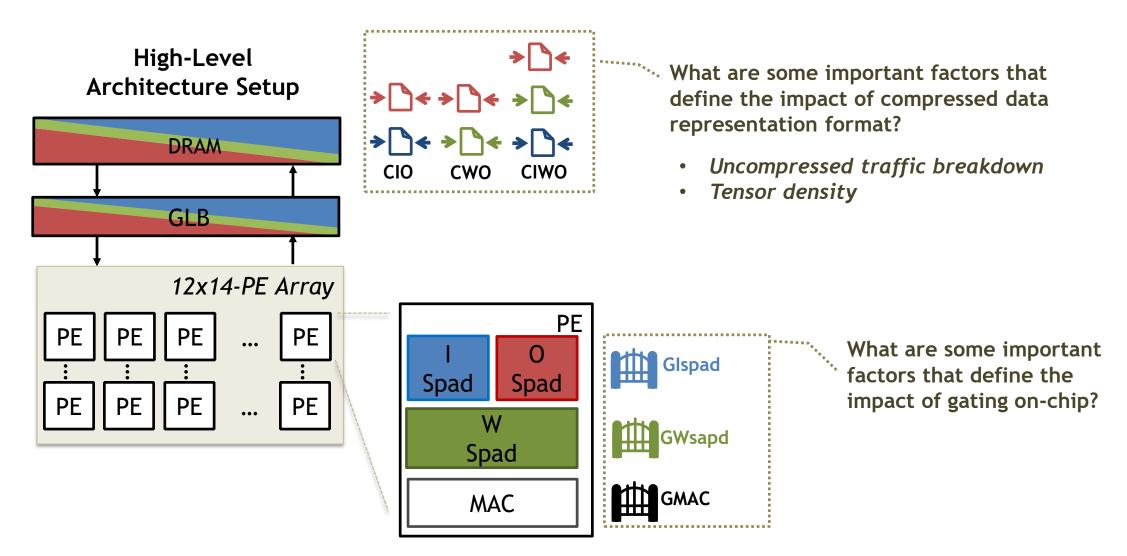
The tensor that dominates uncompressed traffic introduces more savings when compressed

Is that true? No

Layer Densities				
Layer #	Inputs	Outputs	Weights	
Inception_3a_1x1	0.71	0.66	0.37	
Incept3a_pool_proj	0.96	0.46	0.46	
Alexnet_conv4	0.39	0.43	0.37	
Alexnet_conv5	0.43	0.16	0.37	



Explore different sparse optimization features



74

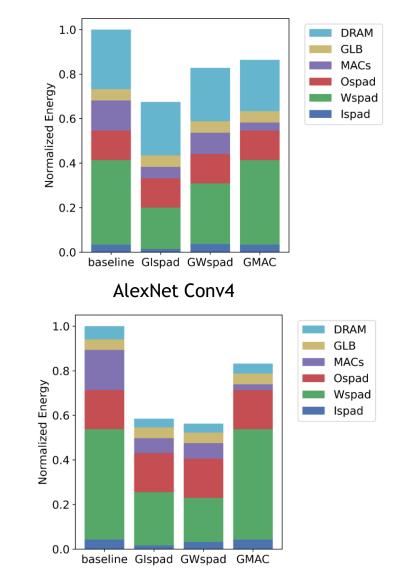
Density vs. Gating Savings

 Layer #	Inputs	Outputs	Weights	_
Inception_3a_1x1	0.71	0.66	0.37	
Incept3a_pool_proj	0.96	0.46	0.46	
Alexnet_conv4	0.39	0.43	0.37	
Alexnet_conv5	0.43	0.16	0.37	_

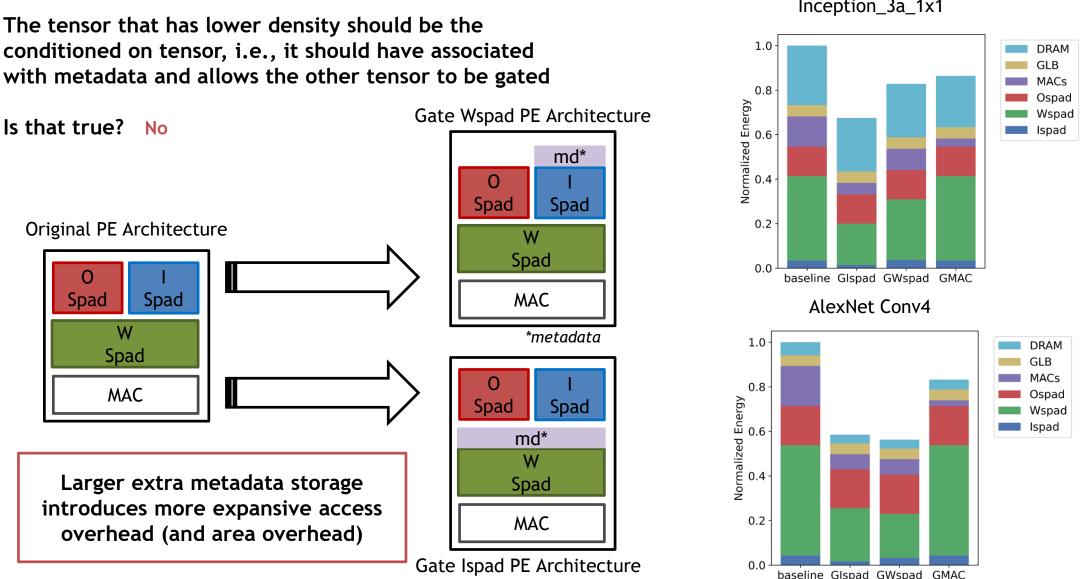
The tensor that has lower density should be the conditioned on tensor, i.e., it should have associated with metadata and allows the other tensor to be gated

Is that true? No

Inception_3a_1x1

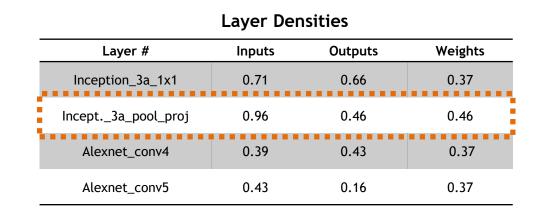


Hardware Attirbutes Plays an Important Role

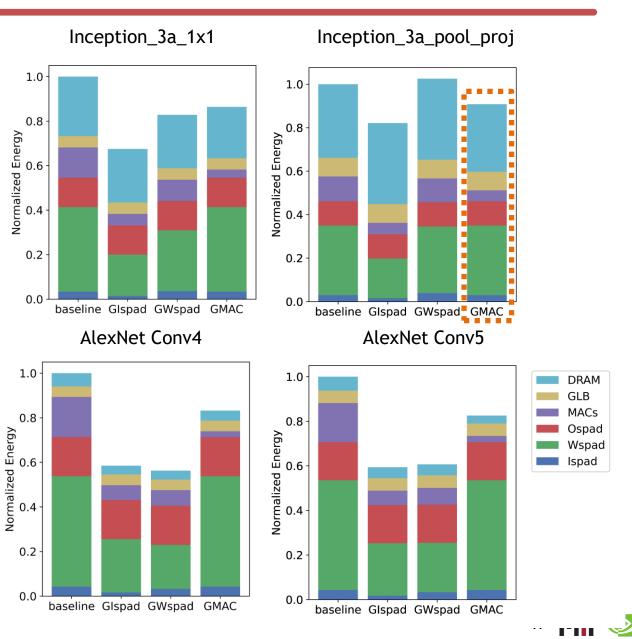


Inception_3a_1x1

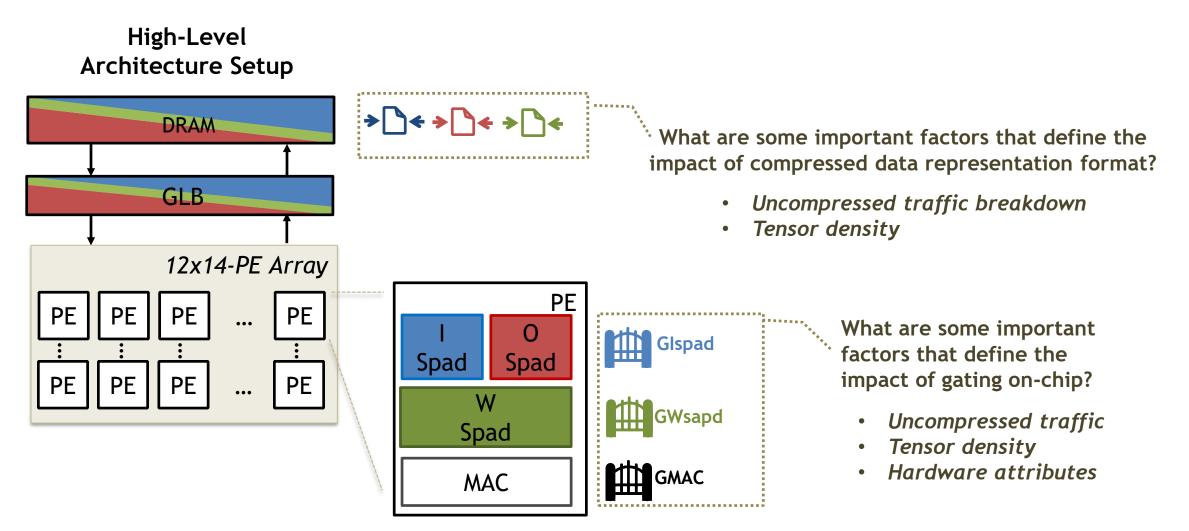
More Examples



Gate compute only could introduce better energy efficiency (and simpler hardware)



Explore different sparse optimization features



Sparse Tensor Accelerator Modeling Summary

- Methodology
 - Specifications
 - Mapping
 - Statistical workload density models
 - Sparse optimization features
 - Systematic analysis of the interactions between different specifications
 - Modularized modeling process that decouples dense traffic modeling and sparse optimization impact modeling
- Timeloop V2 (a.k.a. Sparseloop) Infrastructure
 - Implements the proposed methodology based on Timeloop V1
 - Modularized to allow data representation format and density model plug-ins
- Validation and case studies
 - Validation on Eyeriss V1 and SCNN
 - Exploration of various combinations of sparse optimization features

Sparse Tensor Accelerators: Abstraction and Modeling

Background Lecture Part 2

Joel Emer Angshuman Parashar Vivienne Sze Po-An Tsai Nellie Wu

ISCA Tutorial

June 2021

