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Many problems use Sparse Tensors

[Hegde, et.al., MICRO 2019]

June 19, 2021
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Exploiting Sparsity

Sparse data can be compressed

Can save space and 
energy by avoiding 
manipulation of zero 
values

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈 × 𝟎 = 𝟎

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈 + 𝟎 = 𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈

Can save time and 
energy by avoiding 
fetching unnecessary 
operands and avoiding 
computations
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Outline

• Problem specification and motivation

• Specifying scheduling of computations on dense data

• Abstracting the representation of sparse tensors

• Specifying scheduling of computations on sparse data

• Present simple example architectures that exploit sparsity

• Architectural features for exploiting sparsity

• Workload specification for sparse computations

• Modeling of impact of sparse optimization features
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Problem Specification
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Tensor Matrix Multiplication
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K

N
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Matrix Multiplication Tensor Computation
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Matrix Multiplication Tensor Computation
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Matrix Multiplication Tensor Computation

Input A

K

N
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Matrix Multiply – Loop Nest

for m in [0, M):
for n in [0, N):

for k in [0, K):
Z[m][n] += A[m][k] × B[k][n]
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Matrix Multiply – Einsum

for m in [0, M):
for n in [0, N):

for k in [0, K):
Z[m][n] += A[m][k] × B[k][n]

𝑍𝑚,𝑛 = 𝐴𝑚,𝑘 × 𝐵𝑘,𝑛
m, n – uncontracted dimensions

k – contracted dimension
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Matrix Multiply – Instance Specification

• M – Height of input A and output Z, e.g., M=256

• K – Width of input A and height of input B, e.g., K=128

• N – Width of input B and output Z, e.g., N=64

June 19, 2021
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Tensor Convolution

…
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16

Convolution – Loop Nest

June 19, 2021

for n in [0, N):
for m in [0, M):

for q in [0, Q):
for p in [0, P):

O[n][m][p][q] = B[m]

for r in [0, R):
for s in [0, S):

for c in [0,C):
O[n][m][p][q] += I[n][c][Up+r][Uq+s] ×

F[m][c][r][s]

O[n][m][p][q] = Activation(O[n][m][p][q]);

Convolve 
a window 
and apply 
activation

For each output fmap value
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Convolution – Einsum

June 19, 2021

𝑂𝑛,𝑚,𝑝,𝑞 = 𝐼𝑛,𝑐,(𝑝+𝑟),(𝑞+𝑠) × 𝐹𝑚,𝑐,𝑟,𝑠

for n in [0, N):
for m in [0, M):

for q in [0, Q):
for p in [0, P):

O[n][m][p][q] = B[m]

for r in [0, R):
for s in [0, S):

for c in [0,C):
O[n][m][p][q] += I[n][c][Up+r][Uq+s] ×

F[m][c][r][s]

O[n][m][p][q] = Activation(O[n][m][p][q]);

Convolve 
a window 
and apply 
activation

For each output fmap value
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Convolution – Instance Specification

• N – Number of input fmaps/output fmaps (batch size)

• C – Number of channels in input fmaps (activations) & filters (weights)

• H – Height of input fmap (activations) 

• W – Width of input fmap (activations)

• R – Height of filter (weights)

• S – Width of filter (weights)

• M – Number of channels in output fmaps (activations)

• P – Height of output fmap (activations)

• Q – Width of output fmap (activations)

• U – Stride of convolution

June 19, 2021
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Schedule Specification
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Weight stationary dataflow

June 19, 2021

Tensor i[W];     # Input activations
Tensor f[S];     # Filter weights
Tensor o[Q];     # Output activations

for s in [0, S):
for q in [0, Q):

o[q] += i[q+s]*f[s];

𝑂𝑞 = 𝐼(𝑞+𝑠) × 𝐹𝑠
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Weight Stationary – Reference Pattern

June 19, 2021

Observations: - Single weight is reused many times (Q)
- Large sliding window of inputs (size = Q)
- Fixed window of outputs (size = Q)
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Parallel Weight Stationary - Animation

June 19, 2021

Tensor i[W];     # Input activations
Tensor f[S];     # Filter weights
Tensor o[Q];     # Output activations

parallel-for s in [0, S):
for q in [0, Q):

o[q] += i[q+s]*f[s];

𝑂𝑞 = 𝐼(𝑞+𝑠) × 𝐹𝑠
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Weight Stationary (WS)

• Minimize weight read energy consumption

− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate psums spatially
across the PE array.

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Activation

PE

Weight

June 19, 2021

Weights are in the outer loop
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WS Example: nn-X (NeuFlow)

[Farabet et al., ICCV 2009]

A 3×3 2D Convolution Engine

weights

activations

psums

June 19, 2021



26

Tensor i[W];     # Input activations
Tensor f[S];     # Filter weights
Tensor o[Q];     # Output activations

for s in [0, S):
for q in [0, Q):

o[q] += i[q+s]*f[s];

1-D Convolution – Weight Stationary

June 19, 2021

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

† Assuming: ‘valid’ style convolution

No constraints on 
loop 

permutations!
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1-D Convolution

Tensor i[W];     # Input activations
Tensor f[S];     # Filter weights
Tensor o[Q];     # Output activations

for q in [0, Q):
for s in [0, S):

o[q] += i[q+s]*f[s];

June 19, 2021

𝑂𝑞 = 𝐼(𝑞+𝑠) × 𝐹𝑠
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Output Stationary – Reference Pattern

June 19, 2021

Instance: - S = 4
- Q = 9
- W = 12

for q in [0, Q):
for s in [0, S):

o[q] += i[q+s]*f[s]
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Output Stationary – Reference Pattern

June 19, 2021

Observations: - Single output is reused many times (S)
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• Minimize partial sum R/W energy consumption

− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activation Weight

PE

Psum

June 19, 2021
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OS Example: ShiDianNao

Top-Level Architecture PE Architecture

[Du et al., ISCA 2015]

weights activations

psums

June 19, 2021

• Inputs streamed through array
• Weights broadcast
• Partial sums accumulated in PE and streamed out
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Motivation

• Leverage CNN sparsity to improve energy-efficiency
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𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈 × 𝟎 = 𝟎
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Tensor Abstraction
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"In Dimensional Chess, every move is annotated '?!'."

Source: XKCD/2465
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Tensor Data Terminology

a b c

d e f

g h i

H

W

0 1 2

0

1

2

• The elements of each “rank” (dimension) are identified by 
their “coordinates”, e.g., rank H has coordinates 0, 1, 2

• Each element of the tensor is identified by the tuple of 
coordinates from each of its ranks, i.e., a “point”. 
So (1,2) -> “f”

Coordinates

Coordinates

Ranks

Point (1,2)

June 19, 2021
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Tree-based Tensor Abstraction
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Tree-based Tensor Abstraction
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Fibers
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Fiber-Tree Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

W

H

R

Each coordinate references a fiber

June 19, 2021

Fibers



40

Fiber-Tree Tensor Abstraction
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FibersRank
Root

Value

Coordinate
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Fiber-Tree Tensor Abstraction
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Finding point (2, 1)
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a c
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Tree-based Tensor Abstraction
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What if tensor
is sparse?
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Tree-based Tensor Abstraction

a c g h

0

0 2

b

1 1

2

0

i

2

W

H

R

d e f

1

1

0 2

June 19, 2021

What if tensor
is sparse?
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a c
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What if tensor
is sparse?
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Finding point (2, 1)
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Concrete Fiber  Implementations
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Information in a Fiber

• Each fiber has a set of (coordinate, “payload”) tuples 

a c g h

0

0 2 1

2

0

W

H

Payload:
Reference to 
fiber in next 

rank

Payload:
Value

Coordinate

June 19, 2021

R
Coordinate
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Example Fiber Representations

June 19, 2021

a b c d e f g h i

0  1   2   3   4   5   6  7   8 

Position and 
coordinate

Payload

a

0 3

d

5

f

8

i
Payload

Coordinate

0  1   2   3 

Position

Array Coordinate/Payload List

Each fiber has a set of (coordinate, “payload”) tuples

Data in a fiber is accessed by its position or offset in memory
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Fiber Representation Choices

• Implicit Coordinates
– Uncompressed (no metadata required)

– Compressed – e.g., run length encoded

• Explicit Coordinates
– E.g., coordinate/payload list

• Compressed vs Uncompressed
– Compressed/uncompressed is an attribute of the representation*.

– Uncompressed means size is proportional to maximum coordinate value

– Compressed formats will have metadata overhead relative to uncompressed 
formats. For dense data, this may cost more than just using an uncompressed 
format.

– Space efficiency of a representation depends on sparsity

June 19, 2021

*Note: sparsity/density is an attribute of the data.
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Compressed Implicit Coordinate Representations

• “Empty” coordinate compression via zero-run encoding
– Run-length coding (RLE)

• (run-length of zeros, non-zero payload)…

– Significance map coding
• (flag to indicate if non-zero, non-zero payload)…

• Payload encoding
– Fixed length payload

– Variable length payload
• E..g., Huffman coding

June 19, 2021
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Compressed Explicit Coordinate Representations

• Coordinate list representation
– Struct of arrays form

(coordinate of non-zero value)…

(non-zero payload)… 

– Array of structs form
(coordinate of non-zero value, non-zero payload)…

• Payload encoding
– Explicit

• Immediate value

• Pointer

– Implicit
• Offset of coordinate is offset of payload

June 19, 2021

a0 3 d 5 f 8 i

0        1       2        3 

a0 3 d5 f8 i

0  1   2   3 0  1   2   3 

Black bar show scope of struct
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Uncompressed/Compressed Representation

a c g h

0

0 2 1
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0

W

H

Rank

Fiber

a c

g h
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0 1 2

0

1

2

1

June 19, 2021

R

A specific implementation of the fibertree abstract type
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Uncompressed/Compressed Representation

a c g h

0 2 10

W

H

0,2 2,0 2,20 1 2

H_Position == H_Coordinate

W_Position, Length

0 1 2 3

June 19, 2021

R

W_Position != W_Coordinate

A specific implementation of the fiber-tree abstract type
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Uncompressed/Compressed Representation

a c g h

0 2 10

W

H

0,2 2,0 2,2

0 1 2 3

W_Position, Length

0 1 2

June 19, 2021

R

A specific implementation of the fiber-tree abstract type
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Uncompressed/Compressed Representation
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0 1 2

Rank W has “implicit payload” 
since position allows indexing 
into value array

June 19, 2021

R

W_Position

A specific implementation of the fiber-tree abstract type
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Uncompressed/Compressed Representation
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R

Note: First element of pair is
always  sum of  pair of elements
in previous cell

W_Position

A specific implementation of the fiber-tree abstract type
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Uncompressed/Compressed Representation
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A specific implementation of the fiber-tree abstract type



58

Uncompressed/Compressed Representation
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R

W_Position

A specific implementation of the fiber-tree abstract type
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g

Uncompressed/Compressed Representation
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R

Segment 
Array

Coordinate 
Array

Value Array

Compressed Sparse Row (CSR)

A specific implementation of the fiber-tree abstract type
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Explicit Coordinate Representations

• Coordinate/Payload list
– (coordinate, non-zero payload)… (array of structs)

– (coordinate)… , (non-zero payload)… (struct of arrays)

• Hash table (per fiber)
– (coordinate ->  payload) mapping

• Hash table (per rank)
– (fiber_id, coordinate ->  payload) mapping

• Bit vector of non-zero coordinates
– Uncompressed payload

June 19, 2021
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Per Rank Tensor Representations

– Uncompressed [U]
•

– Run-length Encoded [R]
•

– Coordinate/Payload List [C]
•

– Hash Table (per rank) [Hr]

– Hash Table (per fiber) [Hf]

– Tagged union of any combination of previous types

Inspired by collaboration with Kjolstad
in [Kjolstad, OOPSLA17], [Chou, OOPSLA18]June 19, 2021
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g

Notation for CSR
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CSR: Tensor<U,C>(H,W)

Uncompressed

Coordinate/Payload

Rank order

June 19, 2021

R
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Representation of Order of Ranks

Tensor<UC>(HW)  → CSR  

a c

g h

H

W

0 1 2

0

1

2

Tensor<UC>(WH)  → CSC  

June 19, 2021
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Merging Ranks

Tensor-<CC>(HW)  Tensor-<C2>(HW)  

June 19, 2021
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For efficiency one can form new representations where the 
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Merging Ranks

• For efficiency one can form new representations where the data 
structure for two or more ranks are combined:

• Examples:

– Tensor-(C2)
List of (coordinate tuple,payload)   - COO

– Tensor-(H2)
• Hash table with coordinate tuple as key

– Tensor-(U2)
• Flattened array 
• Coordinates can be recovered with modulo arithmetic on “position”

– Tensor-(R2)
• Flattened run-length encoded sequence

June 19, 2021
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Traversal Efficiency

Efficiency of different traversal patterns through the tensor is 
affected by encoding, e.g., finding the payload for a particular 
coordinate…

• Operations:

– maybe(payload) = Fiber.getPayload(coordinate)

– (coordinate, payload) = Fiber.getNext(rank_traversal_order)

Fiber.next() is a useful iterator and its efficiency is highly 
dependent on representation, both order of ranks and 
representation of each rank….

June 19, 2021
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Concordant traversal orders

CSR and CSC each has a natural (or “concordant”*) traversal 
order 

Original 
Matrix

Compressed 
Sparse Column 

(CSC)

Compressed 
Sparse Row 

(CSR)

Processing 
Order

* Term from Michael Pellauer
June 19, 2021
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Example Traversal Efficiency

• Efficiency of getPayload():
– Uncompressed – direct reference - O(1)

– Run length encoded – linear search – O(n)

– Hash table – multiple references and compute – O(1)

– Coordinate/Payload list – binary search – O(log n)

• Efficiency of getNext() - (concordant traversal)
– Uncompressed – sequential reference, good spatial locality  - O(1)

– Run length encoded – sequential reference – O(1)

– Coordinate/Payload list - same as uncompressed

• Efficiency of getNext() (discordant traversal)
– Essentially as good (or bad) as payload-method….

June 19, 2021
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Tensor Traversal Scheduling
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Traversing a Sparse Tensor

June 19, 2021

# 1-D Tensor Traversal

t = Tensor(H)

sum = 0
for (h, t_val) in t: 

sum += t_val

1 4 2 3

0 5 98

H

t
t_pos h t_val sum

0 0 1 1

1 5 4 5

2 8 2 7

3 9 3 10

Each iteration returns a 
(coordinate, payload) 

tuple

Iteration generated by 
repeated calls to 

getNext()
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Traversing a Sparse Tensor

June 19, 2021

Tensor t

Pos
Payload

Coord

t_val

h

Pgen

h_pos

sum

Latch

Add

1 4 2 3

0 5 98

H

t
t_pos h t_val sum

0 0 1 1

1 5 4 5

2 8 2 7

3 9 3 10
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Tensor Traversal (2-D)

June 19, 2021

# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h: 
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t

Each iteration returns a 
(coordinate, payload) 

tuple

Each iteration returns a 
(coordinate, payload) 

tuple

t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …
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Tensor Traversal (2-D)

June 19, 2021

# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h: 
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …



76

Tensor Traversal (2-D)

June 19, 2021

# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h: 
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …
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Tensor Traversal (2-D)

June 19, 2021

# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h: 
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …
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Tensor Traversal (2-D)

June 19, 2021

# 2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h: 
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …
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Tensor Traversal (2-D)

June 19, 2021

a c g h

0

0 2 1

2

0

W

H

t

Tensor t – H rank

Pos
Payload

Coord

t_h

h

Pgen

h_pos

Tensor t – W rank

Pos
Payload

Coord

t_val

w

Pgen

w_pos
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Tensor Traversal (CSR Style)
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# 2-D Tensor Traversal (CSR)

t_segs = Array(H)
t_coords = Array(W)
t_vals = Array(W)

sum = 0
for t_h_pos in [0,H):

h = t_h_pos
t_w_start = t_segs[t_h_pos]
t_w_len = t_segs[t_h_pos+1]-t_w_start
for t_w_pos in [t_w_start, t_w_len):

h = t_coords[t_w_pos]
t_val = t_vals[t_w_pos]
sum += t_val

For uncompressed rank 
coordinate  equals 

position

Coordinates not actually 
used in this example
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Sparse Tensor Computations
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CONV Layer
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P

output fmap

…
R

S

1

R
8

H

W Q

input fmap
C

C

C

S

M

filters

1

M

Filter overlay

Incomplete partial sum
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Output Stationary – Uncompressed

June 19, 2021

i = Array(W)       # Input activations
f = Array(S)       # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
for s in [0, S):
w = q + s
o[q] += i[w] * f[s]

Note: s, q are the 
coordinates of the desired 

elements of the tensor

Need to calculate 
position/coordinate in third 

tensor

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =
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0 2

8  6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8  0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

June 19, 2021

† Assuming: ‘valid’ style convolution

Fiber coordinate values
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Output Stationary – Sparse Weights

June 19, 2021

i = Array(W)       # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
for (s, f_val) in f:
w = q + s
o[q] += i[w] * f_val

Concordant traversal

i = Array(W)       # Input activations
f = Array(S)       # Filter weights
o = Array(Q)       # Output activations

for q in [0, Q):
for s in [0, S):
w = q + s
o[q] += i[w] * f[s]
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Output Stationary – Sparse Weights

June 19, 2021
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Output Stationary – Sparse Weights

June 19, 2021
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Output Stationary – Sparse Weights
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MACCgen

Pgen

Filter Weights

Pos
Payload

Coord

Calc
q+s

s

w

q

q

Input Activations

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

Latch

o’[q]

o[q]

i[w]

f[s]
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Weight Stationary - Sparse Weights 

June 19, 2021

i = Array(W)       # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for (s, f_val) in f:
for q in [0, Q):
w = q + s
o[q] += i[w] * f_val

Concordant traversal
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Weight Stationary - Sparse Weights 
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MACCgen

Pgen

Filter Weights

Pos
Payload

Coord

Calc
q+s

s

w

q

q

Input Activations

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

o[q]

o’[q]

i[w]

f[s]f[s]

s

Latch



92

To Extend to Other Dimensions of DNN

• Need to add loop nests for:

– 2-D input activations and filters

– Multiple input channels

– Multiple output channels

• Add parallelism… 

June 19, 2021
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Before Split Equal by 2
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Fiber Splitting Equally in Position Space
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Before Split Equal by 2
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Before Split Equal by 2
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Before Split Equal by 2
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Parallel Weight Stationary - Sparse Weights 

June 19, 2021

i = Array(W)       # Input activations
f = Tensor(S)      # Filter weights
o = Array(Q)       # Output activations

for (s1, f_split) in f.splitEqual(2):
for q1 in [0, Q/4):

parallel-for (s0, f_val) in f_split:
parallel-for q0 in [0, 4):

q = q1*4 + q0
w = q + s
o[q] += i[w] * f_val

Get groups of two 
weights

Work on two 
weights in parallel

Work on four 
outputs at once

Calculate 
coordinates

Look up input 
activation

Accumulate multiple 
outputs each 

spatially 
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Parallel Weight Stationary - Sparse Weights 

June 19, 2021
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Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks 
Introduction 

Overview of Deep Neural Networks 

Part II Design of Hardware for Processing 
DNNs 

Key Metrics and Design Objectives 
Kernel Computation 

Designing DNN Accelerators 
Operation Mapping on Specialized Hardware 

Part III Co-Design of DNN Hardware and 
Algorithms 

Reducing Precision 
Exploiting Sparsity 

Designing Efficient DNN Models 
Advanced Technologies 

https://tinyurl.com/EfficientDNNBook

June 19, 2021

https://tinyurl.com/EfficientDNNBook

