
1

Sparse Tensor Accelerators:

Abstraction and Modeling

ISCA Tutorial

June 2021

Background Lecture Part 1

Joel Emer

Angshuman Parashar

Vivienne Sze

Po-An Tsai

Nellie Wu

2

Many problems use Sparse Tensors

[Hegde, et.al., MICRO 2019]

June 19, 2021

3

Exploiting Sparsity

Sparse data can be compressed

Can save space and
energy by avoiding
manipulation of zero
values

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈 × 𝟎 = 𝟎

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈 + 𝟎 = 𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈

Can save time and
energy by avoiding
fetching unnecessary
operands and avoiding
computations

4

Outline

• Problem specification and motivation

• Specifying scheduling of computations on dense data

• Abstracting the representation of sparse tensors

• Specifying scheduling of computations on sparse data

• Present simple example architectures that exploit sparsity

• Architectural features for exploiting sparsity

• Workload specification for sparse computations

• Modeling of impact of sparse optimization features

5

Modeling Overview

Mapping

Valid ?

CyclesTimeloop V2

Energy

*adapted and improved based on Timeloop V1 model

PE0 PE1

PE2 PE3

Global

Buffer

(GLB)

Architecture

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Sparse Optimization Features

format gating skipping

Mapping

6

Problem Specification

7

Modeling Overview

Mapping

Valid ?

CyclesTimeloop V2

Energy

*adapted and improved based on Timeloop V1 model

PE0 PE1

PE2 PE3

Global

Buffer

(GLB)

Architecture

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Sparse Optimization Features

format gating skipping

Mapping

8

Tensor Matrix Multiplication

Input A

K

N

June 19, 2021

Input B

K

M M

N

×

Output Z

=

9

Matrix Multiplication Tensor Computation

Input A

K

N

June 19, 2021

Input B

K

M M

N

×

Output Z

=

10

Matrix Multiplication Tensor Computation

Input A

K

N

June 19, 2021

Input B

K

M M

N

×

Output Z

=

11

Matrix Multiplication Tensor Computation

Input A

K

N

June 19, 2021

Input B

K

M M

N

×

Output Z

=

12

Matrix Multiply – Loop Nest

for m in [0, M):
for n in [0, N):

for k in [0, K):
Z[m][n] += A[m][k] × B[k][n]

13

Matrix Multiply – Einsum

for m in [0, M):
for n in [0, N):

for k in [0, K):
Z[m][n] += A[m][k] × B[k][n]

𝑍𝑚,𝑛 = 𝐴𝑚,𝑘 × 𝐵𝑘,𝑛
m, n – uncontracted dimensions

k – contracted dimension

14

Matrix Multiply – Instance Specification

• M – Height of input A and output Z, e.g., M=256

• K – Width of input A and height of input B, e.g., K=128

• N – Width of input B and output Z, e.g., N=64

June 19, 2021

15

Tensor Convolution

…

M

…

Many

Input fmaps (N) Many

Output fmaps (N)

…
R

S

R

S

C

C

filters

P

Q

H

C

H

W

C

P

1 1

N
N

W Q

June 19, 2021 Batch Size (N)

16

Convolution – Loop Nest

June 19, 2021

for n in [0, N):
for m in [0, M):

for q in [0, Q):
for p in [0, P):

O[n][m][p][q] = B[m]

for r in [0, R):
for s in [0, S):

for c in [0,C):
O[n][m][p][q] += I[n][c][Up+r][Uq+s] ×

F[m][c][r][s]

O[n][m][p][q] = Activation(O[n][m][p][q]);

Convolve
a window
and apply
activation

For each output fmap value

17

Convolution – Einsum

June 19, 2021

𝑂𝑛,𝑚,𝑝,𝑞 = 𝐼𝑛,𝑐,(𝑝+𝑟),(𝑞+𝑠) × 𝐹𝑚,𝑐,𝑟,𝑠

for n in [0, N):
for m in [0, M):

for q in [0, Q):
for p in [0, P):

O[n][m][p][q] = B[m]

for r in [0, R):
for s in [0, S):

for c in [0,C):
O[n][m][p][q] += I[n][c][Up+r][Uq+s] ×

F[m][c][r][s]

O[n][m][p][q] = Activation(O[n][m][p][q]);

Convolve
a window
and apply
activation

For each output fmap value

18

Convolution – Instance Specification

• N – Number of input fmaps/output fmaps (batch size)

• C – Number of channels in input fmaps (activations) & filters (weights)

• H – Height of input fmap (activations)

• W – Width of input fmap (activations)

• R – Height of filter (weights)

• S – Width of filter (weights)

• M – Number of channels in output fmaps (activations)

• P – Height of output fmap (activations)

• Q – Width of output fmap (activations)

• U – Stride of convolution

June 19, 2021

19

Schedule Specification

20

Modeling Overview

Mapping

Valid ?

CyclesTimeloop V2

Energy

*adapted and improved based on Timeloop V1 model

PE0 PE1

PE2 PE3

Global

Buffer

(GLB)

Architecture

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Sparse Optimization Features

format gating skipping

Mapping

21

Weight stationary dataflow

June 19, 2021

Tensor i[W]; # Input activations
Tensor f[S]; # Filter weights
Tensor o[Q]; # Output activations

for s in [0, S):
for q in [0, Q):

o[q] += i[q+s]*f[s];

𝑂𝑞 = 𝐼(𝑞+𝑠) × 𝐹𝑠

22

Weight Stationary – Reference Pattern

June 19, 2021

Observations: - Single weight is reused many times (Q)
- Large sliding window of inputs (size = Q)
- Fixed window of outputs (size = Q)

23

Parallel Weight Stationary - Animation

June 19, 2021

Tensor i[W]; # Input activations
Tensor f[S]; # Filter weights
Tensor o[Q]; # Output activations

parallel-for s in [0, S):
for q in [0, Q):

o[q] += i[q+s]*f[s];

𝑂𝑞 = 𝐼(𝑞+𝑠) × 𝐹𝑠

24

Weight Stationary (WS)

• Minimize weight read energy consumption

− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate psums spatially
across the PE array.

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Activation

PE

Weight

June 19, 2021

Weights are in the outer loop

25

WS Example: nn-X (NeuFlow)

[Farabet et al., ICCV 2009]

A 3×3 2D Convolution Engine

weights

activations

psums

June 19, 2021

26

Tensor i[W]; # Input activations
Tensor f[S]; # Filter weights
Tensor o[Q]; # Output activations

for s in [0, S):
for q in [0, Q):

o[q] += i[q+s]*f[s];

1-D Convolution – Weight Stationary

June 19, 2021

R

Weights

W

Inputs

E = W-ceil(R/2)†

Outputs

* =

† Assuming: ‘valid’ style convolution

No constraints on
loop

permutations!

27

1-D Convolution

Tensor i[W]; # Input activations
Tensor f[S]; # Filter weights
Tensor o[Q]; # Output activations

for q in [0, Q):
for s in [0, S):

o[q] += i[q+s]*f[s];

June 19, 2021

𝑂𝑞 = 𝐼(𝑞+𝑠) × 𝐹𝑠

28

Output Stationary – Reference Pattern

June 19, 2021

Instance: - S = 4
- Q = 9
- W = 12

for q in [0, Q):
for s in [0, S):

o[q] += i[q+s]*f[s]

29

Output Stationary – Reference Pattern

June 19, 2021

Observations: - Single output is reused many times (S)

30

• Minimize partial sum R/W energy consumption

− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations
spatially across the PE array

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activation Weight

PE

Psum

June 19, 2021

31

OS Example: ShiDianNao

Top-Level Architecture PE Architecture

[Du et al., ISCA 2015]

weights activations

psums

June 19, 2021

• Inputs streamed through array
• Weights broadcast
• Partial sums accumulated in PE and streamed out

32

Motivation

• Leverage CNN sparsity to improve energy-efficiency

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

conv1 conv2 conv3 conv4 conv5

W
o

rk
 (

o

f
m

u
lt

ip
lie

s)

D
e

n
si

ty
 (

IA
, W

)
AlexNet Density (IA)

Density (W)

June 19, 2021

𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈 × 𝟎 = 𝟎

33

Tensor Abstraction

34

Modeling Overview

Mapping

Valid ?

CyclesTimeloop V2

Energy

*adapted and improved based on Timeloop V1 model

PE0 PE1

PE2 PE3

Global

Buffer

(GLB)

Architecture

M

H

C

P

W
Q

=…
R

S

C

R

S

C

Workload

Sparse Optimization Features

format gating skipping

Mapping

35

"In Dimensional Chess, every move is annotated '?!'."

Source: XKCD/2465

36

Tensor Data Terminology

a b c

d e f

g h i

H

W

0 1 2

0

1

2

• The elements of each “rank” (dimension) are identified by
their “coordinates”, e.g., rank H has coordinates 0, 1, 2

• Each element of the tensor is identified by the tuple of
coordinates from each of its ranks, i.e., a “point”.
So (1,2) -> “f”

Coordinates

Coordinates

Ranks

Point (1,2)

June 19, 2021

37

Tree-based Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

W

H

Rank
Root

Value

Coordinate R

June 19, 2021

38

Tree-based Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

W

H

R

Each coordinate references a fiber

June 19, 2021

Fibers

39

Fiber-Tree Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

W

H

R

Each coordinate references a fiber

June 19, 2021

Fibers

40

Fiber-Tree Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

W

H

R

June 19, 2021

FibersRank
Root

Value

Coordinate

41

Fiber-Tree Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c d e f g h i

1

0

0 2 1

1

0 2 1

2

0 2

W

H

R

June 19, 2021

Finding point (2, 1)

42

a c

g h

H

W

0 1 2

0

1

2

Tree-based Tensor Abstraction

a b c

d e f

g h i

H

W

0 1 2

0

1

2

a b c g h i

1

0

0 2 1

2

0 2

W

H

R

June 19, 2021

What if tensor
is sparse?

d e f

1

1

0 2

43

a c

g h

H

W

0 1 2

0

1

2

Tree-based Tensor Abstraction

a c g h

0

0 2

b

1 1

2

0

i

2

W

H

R

d e f

1

1

0 2

June 19, 2021

What if tensor
is sparse?

44

a c

g h

H

W

0 1 2

0

1

2

Tree-based Tensor Abstraction

a c g h

0

0 2 1

2

0

W

H

R

June 19, 2021

What if tensor
is sparse?

45

a c

g h

H

W

0 1 2

0

1

2

Tree-based Tensor Abstraction

a c g h

0

0 2 1

2

0

W

H

R

June 19, 2021

Finding point (2, 1)

46

Concrete Fiber Implementations

47

Information in a Fiber

• Each fiber has a set of (coordinate, “payload”) tuples

a c g h

0

0 2 1

2

0

W

H

Payload:
Reference to
fiber in next

rank

Payload:
Value

Coordinate

June 19, 2021

R
Coordinate

48

Example Fiber Representations

June 19, 2021

a b c d e f g h i

0 1 2 3 4 5 6 7 8

Position and
coordinate

Payload

a

0 3

d

5

f

8

i
Payload

Coordinate

0 1 2 3

Position

Array Coordinate/Payload List

Each fiber has a set of (coordinate, “payload”) tuples

Data in a fiber is accessed by its position or offset in memory

49

Fiber Representation Choices

• Implicit Coordinates
– Uncompressed (no metadata required)

– Compressed – e.g., run length encoded

• Explicit Coordinates
– E.g., coordinate/payload list

• Compressed vs Uncompressed
– Compressed/uncompressed is an attribute of the representation*.

– Uncompressed means size is proportional to maximum coordinate value

– Compressed formats will have metadata overhead relative to uncompressed
formats. For dense data, this may cost more than just using an uncompressed
format.

– Space efficiency of a representation depends on sparsity

June 19, 2021

*Note: sparsity/density is an attribute of the data.

50

Compressed Implicit Coordinate Representations

• “Empty” coordinate compression via zero-run encoding
– Run-length coding (RLE)

• (run-length of zeros, non-zero payload)…

– Significance map coding
• (flag to indicate if non-zero, non-zero payload)…

• Payload encoding
– Fixed length payload

– Variable length payload
• E..g., Huffman coding

June 19, 2021

51

Compressed Explicit Coordinate Representations

• Coordinate list representation
– Struct of arrays form

(coordinate of non-zero value)…

(non-zero payload)…

– Array of structs form
(coordinate of non-zero value, non-zero payload)…

• Payload encoding
– Explicit

• Immediate value

• Pointer

– Implicit
• Offset of coordinate is offset of payload

June 19, 2021

a0 3 d 5 f 8 i

0 1 2 3

a0 3 d5 f8 i

0 1 2 3 0 1 2 3

Black bar show scope of struct

52

Uncompressed/Compressed Representation

a c g h

0

0 2 1

2

0

W

H

Rank

Fiber

a c

g h

H

W

0 1 2

0

1

2

1

June 19, 2021

R

A specific implementation of the fibertree abstract type

53

Uncompressed/Compressed Representation

a c g h

0 2 10

W

H

0,2 2,0 2,20 1 2

H_Position == H_Coordinate

W_Position, Length

0 1 2 3

June 19, 2021

R

W_Position != W_Coordinate

A specific implementation of the fiber-tree abstract type

54

Uncompressed/Compressed Representation

a c g h

0 2 10

W

H

0,2 2,0 2,2

0 1 2 3

W_Position, Length

0 1 2

June 19, 2021

R

A specific implementation of the fiber-tree abstract type

55

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

W

H

0,2 2,0 2,2

0 1 2 3

0 1 2 3

W_Position, Length

0 1 2

Rank W has “implicit payload”
since position allows indexing
into value array

June 19, 2021

R

W_Position

A specific implementation of the fiber-tree abstract type

56

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

W

H

0,2 2,0 2,2

0 1 2 3

0 1 2 3

Position, Length

0 1 2

June 19, 2021

R

Note: First element of pair is
always sum of pair of elements
in previous cell

W_Position

A specific implementation of the fiber-tree abstract type

57

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

W

H

0 2 2

0 1 2 3

0 1 2 3

Note: First element of pair is
always sum of pair of elements
in previous cell, so length can
be computed from next cell’s value.

4

Position, Length

0 1 2

June 19, 2021

R

W_Position

A specific implementation of the fiber-tree abstract type

58

Uncompressed/Compressed Representation

c

2

a

0

g

0

h

1

W

H

0 2 2

0 1 2 3

0 1 2 3

4

Extra cell for
computing final

length

Position, Length

0 1 2

June 19, 2021

R

W_Position

A specific implementation of the fiber-tree abstract type

59

g

Uncompressed/Compressed Representation

ca

W

H

0 2 2 4

0 2 0 1

h

a c

g h

H

W

0 1 2

0

1

2

June 19, 2021

R

Segment
Array

Coordinate
Array

Value Array

Compressed Sparse Row (CSR)

A specific implementation of the fiber-tree abstract type

60

Explicit Coordinate Representations

• Coordinate/Payload list
– (coordinate, non-zero payload)… (array of structs)

– (coordinate)… , (non-zero payload)… (struct of arrays)

• Hash table (per fiber)
– (coordinate -> payload) mapping

• Hash table (per rank)
– (fiber_id, coordinate -> payload) mapping

• Bit vector of non-zero coordinates
– Uncompressed payload

June 19, 2021

61

Per Rank Tensor Representations

– Uncompressed [U]
•

– Run-length Encoded [R]
•

– Coordinate/Payload List [C]
•

– Hash Table (per rank) [Hr]

– Hash Table (per fiber) [Hf]

– Tagged union of any combination of previous types

Inspired by collaboration with Kjolstad
in [Kjolstad, OOPSLA17], [Chou, OOPSLA18]June 19, 2021

63

g

Notation for CSR

ca

W

H

0 2 2 4

0 2 0 1

h

a c

g h

H

W

0 1 2

0

1

2

CSR: Tensor<U,C>(H,W)

Uncompressed

Coordinate/Payload

Rank order

June 19, 2021

R

64

Representation of Order of Ranks

Tensor<UC>(HW) → CSR

a c

g h

H

W

0 1 2

0

1

2

Tensor<UC>(WH) → CSC

June 19, 2021

a c g h

0

0 2 1

2

0

W

H

R

a
cg h

0

0 2 2

2

0

H

W

1

R

Differentiating CSR and CSC

1

65

Merging Ranks

Tensor-<CC>(HW) Tensor-<C2>(HW)

June 19, 2021

a c g h

0

1 3 3

4

2

W

H

R

a c g h

0,1 0,3 4,34,2

H,W

R

For efficiency one can form new representations where the
data structure for two or more ranks are combined.

a c

g h

H

W

0 1 2

0

1

2

66

Merging Ranks

• For efficiency one can form new representations where the data
structure for two or more ranks are combined:

• Examples:

– Tensor-(C2)
List of (coordinate tuple,payload) - COO

– Tensor-(H2)
• Hash table with coordinate tuple as key

– Tensor-(U2)
• Flattened array
• Coordinates can be recovered with modulo arithmetic on “position”

– Tensor-(R2)
• Flattened run-length encoded sequence

June 19, 2021

67

Traversal Efficiency

Efficiency of different traversal patterns through the tensor is
affected by encoding, e.g., finding the payload for a particular
coordinate…

• Operations:

– maybe(payload) = Fiber.getPayload(coordinate)

– (coordinate, payload) = Fiber.getNext(rank_traversal_order)

Fiber.next() is a useful iterator and its efficiency is highly
dependent on representation, both order of ranks and
representation of each rank….

June 19, 2021

68

Concordant traversal orders

CSR and CSC each has a natural (or “concordant”*) traversal
order

Original
Matrix

Compressed
Sparse Column

(CSC)

Compressed
Sparse Row

(CSR)

Processing
Order

* Term from Michael Pellauer
June 19, 2021

69

Example Traversal Efficiency

• Efficiency of getPayload():
– Uncompressed – direct reference - O(1)

– Run length encoded – linear search – O(n)

– Hash table – multiple references and compute – O(1)

– Coordinate/Payload list – binary search – O(log n)

• Efficiency of getNext() - (concordant traversal)
– Uncompressed – sequential reference, good spatial locality - O(1)

– Run length encoded – sequential reference – O(1)

– Coordinate/Payload list - same as uncompressed

• Efficiency of getNext() (discordant traversal)
– Essentially as good (or bad) as payload-method….

June 19, 2021

70

Tensor Traversal Scheduling

71

Traversing a Sparse Tensor

June 19, 2021

1-D Tensor Traversal

t = Tensor(H)

sum = 0
for (h, t_val) in t:

sum += t_val

1 4 2 3

0 5 98

H

t
t_pos h t_val sum

0 0 1 1

1 5 4 5

2 8 2 7

3 9 3 10

Each iteration returns a
(coordinate, payload)

tuple

Iteration generated by
repeated calls to

getNext()

73

Traversing a Sparse Tensor

June 19, 2021

Tensor t

Pos
Payload

Coord

t_val

h

Pgen

h_pos

sum

Latch

Add

1 4 2 3

0 5 98

H

t
t_pos h t_val sum

0 0 1 1

1 5 4 5

2 8 2 7

3 9 3 10

74

Tensor Traversal (2-D)

June 19, 2021

2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h:
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t

Each iteration returns a
(coordinate, payload)

tuple

Each iteration returns a
(coordinate, payload)

tuple

t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …

75

Tensor Traversal (2-D)

June 19, 2021

2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h:
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …

76

Tensor Traversal (2-D)

June 19, 2021

2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h:
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …

77

Tensor Traversal (2-D)

June 19, 2021

2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h:
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …

78

Tensor Traversal (2-D)

June 19, 2021

2-D Tensor Traversal

t = Tensor(H,W)

sum = 0
for (h, t_h) in t:

for (w, t_val) in t_h:
sum += t_val

a c g h

0

0 2 1

2

0

W

H

t
t_pos h t_h_pos w t_val

0 0 ? ? ?

0 0 0 0 a

0 0 1 2 c

1 2 ? ? ?

… … … … …

79

Tensor Traversal (2-D)

June 19, 2021

a c g h

0

0 2 1

2

0

W

H

t

Tensor t – H rank

Pos
Payload

Coord

t_h

h

Pgen

h_pos

Tensor t – W rank

Pos
Payload

Coord

t_val

w

Pgen

w_pos

80

Tensor Traversal (CSR Style)

June 19, 2021

2-D Tensor Traversal (CSR)

t_segs = Array(H)
t_coords = Array(W)
t_vals = Array(W)

sum = 0
for t_h_pos in [0,H):

h = t_h_pos
t_w_start = t_segs[t_h_pos]
t_w_len = t_segs[t_h_pos+1]-t_w_start
for t_w_pos in [t_w_start, t_w_len):

h = t_coords[t_w_pos]
t_val = t_vals[t_w_pos]
sum += t_val

For uncompressed rank
coordinate equals

position

Coordinates not actually
used in this example

81
June 19, 2021

Sparse Tensor Computations

82

CONV Layer

June 19, 2021

P

output fmap

…
R

S

1

R
8

H

W Q

input fmap
C

C

C

S

M

filters

1

M

Filter overlay

Incomplete partial sum

84

Output Stationary – Uncompressed

June 19, 2021

i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
for s in [0, S):
w = q + s
o[q] += i[w] * f[s]

Note: s, q are the
coordinates of the desired

elements of the tensor

Need to calculate
position/coordinate in third

tensor

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

85

0 2

8 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Compressed Weights

8 0 6

S

Weights

W

Inputs

Q = W-ceil(S/2)†

Outputs

* =

Uncompressed Weights

Output Stationary – Sparse Weights

June 19, 2021

† Assuming: ‘valid’ style convolution

Fiber coordinate values

86

Output Stationary – Sparse Weights

June 19, 2021

i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
for (s, f_val) in f:
w = q + s
o[q] += i[w] * f_val

Concordant traversal

i = Array(W) # Input activations
f = Array(S) # Filter weights
o = Array(Q) # Output activations

for q in [0, Q):
for s in [0, S):
w = q + s
o[q] += i[w] * f[s]

87

Output Stationary – Sparse Weights

June 19, 2021

88

Output Stationary – Sparse Weights

June 19, 2021

89

Output Stationary – Sparse Weights

June 19, 2021

MACCgen

Pgen

Filter Weights

Pos
Payload

Coord

Calc
q+s

s

w

q

q

Input Activations

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

Latch

o’[q]

o[q]

i[w]

f[s]

90

Weight Stationary - Sparse Weights

June 19, 2021

i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (s, f_val) in f:
for q in [0, Q):
w = q + s
o[q] += i[w] * f_val

Concordant traversal

91

Weight Stationary - Sparse Weights

June 19, 2021

MACCgen

Pgen

Filter Weights

Pos
Payload

Coord

Calc
q+s

s

w

q

q

Input Activations

Coord Payload

Partial Sums

Coord Payload

Update

N
ext

o[q]

o’[q]

i[w]

f[s]f[s]

s

Latch

92

To Extend to Other Dimensions of DNN

• Need to add loop nests for:

– 2-D input activations and filters

– Multiple input channels

– Multiple output channels

• Add parallelism…

June 19, 2021

93

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

W

R

Grab first 2

W0

W1

R

Fiber Splitting Equally in Position Space

June 19, 2021

0

0

a

2

c

94

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

W

R

Grab next 2

W0

W1

R

Fiber Splitting Equally in Position Space

June 19, 2021

0

0

a

2

c

1

3

d

5

f

95

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

W

R

Grab next 2

W0

W1

R

Fiber Splitting Equally in Position Space

June 19, 2021

0

0

a

2

c

1

3

d

5

f

2

8

i

9

j

96

Before Split Equal by 2

0

a

2

c

3

d

5

f

8

i

9

j

W

R

After Split Equal by 2

W0

W1

R

Fiber Splitting Equally in Position Space

June 19, 2021

0

0

a

2

c

1

3

d

5

f

2

8

i

9

j

97

Parallel Weight Stationary - Sparse Weights

June 19, 2021

i = Array(W) # Input activations
f = Tensor(S) # Filter weights
o = Array(Q) # Output activations

for (s1, f_split) in f.splitEqual(2):
for q1 in [0, Q/4):

parallel-for (s0, f_val) in f_split:
parallel-for q0 in [0, 4):

q = q1*4 + q0
w = q + s
o[q] += i[w] * f_val

Get groups of two
weights

Work on two
weights in parallel

Work on four
outputs at once

Calculate
coordinates

Look up input
activation

Accumulate multiple
outputs each

spatially

98

Parallel Weight Stationary - Sparse Weights

June 19, 2021

99

Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks
Introduction

Overview of Deep Neural Networks

Part II Design of Hardware for Processing
DNNs

Key Metrics and Design Objectives
Kernel Computation

Designing DNN Accelerators
Operation Mapping on Specialized Hardware

Part III Co-Design of DNN Hardware and
Algorithms

Reducing Precision
Exploiting Sparsity

Designing Efficient DNN Models
Advanced Technologies

https://tinyurl.com/EfficientDNNBook

June 19, 2021

https://tinyurl.com/EfficientDNNBook

