Sparse Tensor Accelerators: Abstraction and Modeling

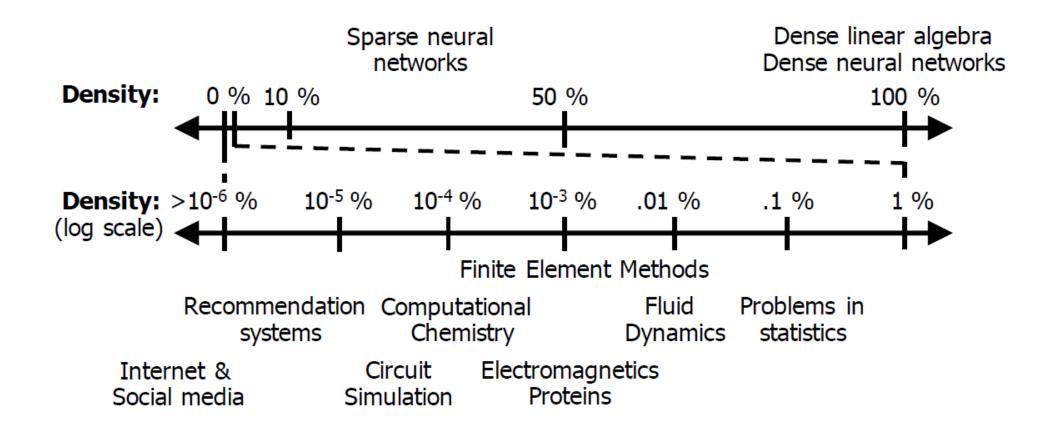
Background Lecture Part 1

Joel Emer Angshuman Parashar Vivienne Sze Po-An Tsai Nellie Wu

ISCA Tutorial

June 2021

Many problems use Sparse Tensors



[Hegde, et.al., MICRO 2019]

Exploiting Sparsity

Sparse data can be compressed

Can save space and energy by avoiding manipulation of zero values

anything $\times 0 = 0$

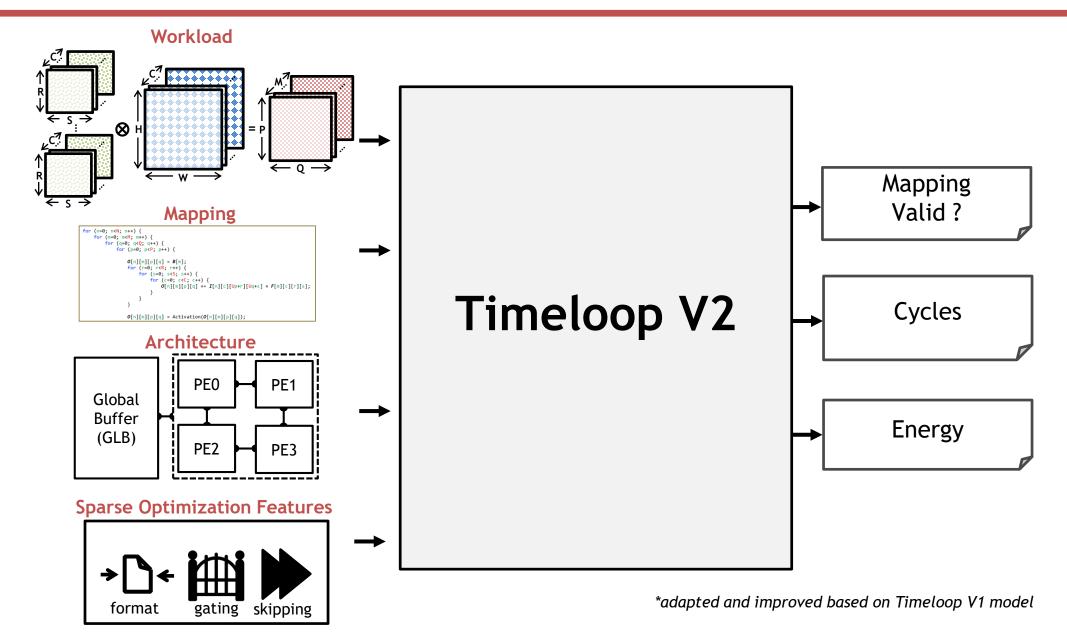
anything + 0 = anything

Can save time and energy by avoiding fetching unnecessary operands and avoiding computations

Outline

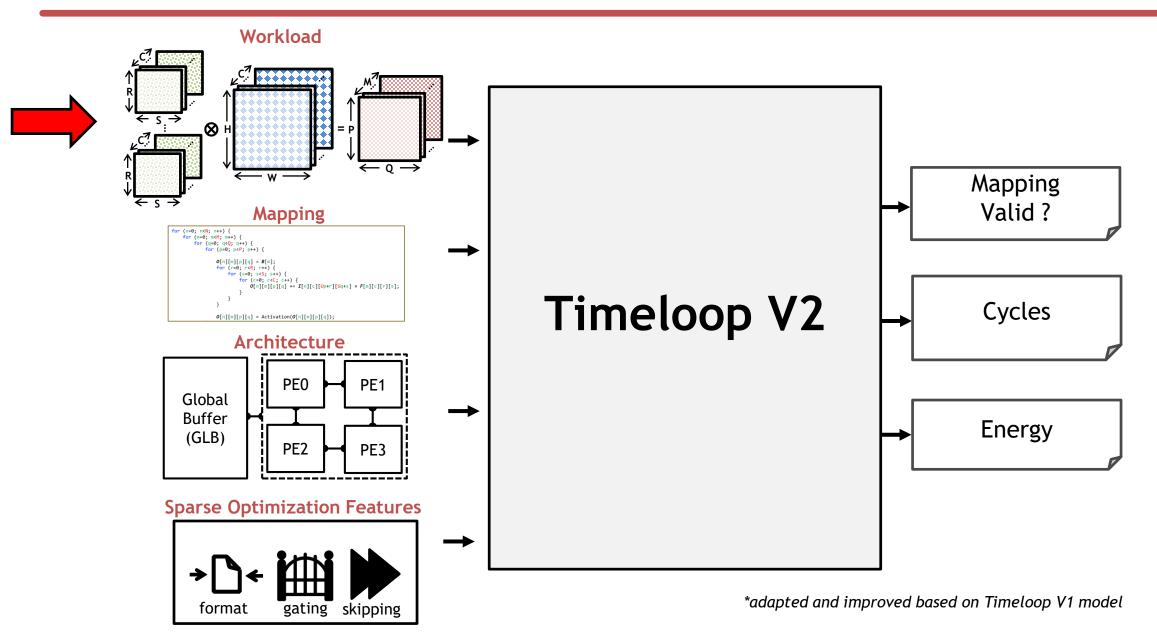
- Problem specification and motivation
- Specifying scheduling of computations on dense data
- Abstracting the representation of sparse tensors
- Specifying scheduling of computations on sparse data
- Present simple example architectures that exploit sparsity
- Architectural features for exploiting sparsity
- Workload specification for sparse computations
- Modeling of impact of sparse optimization features

Modeling Overview

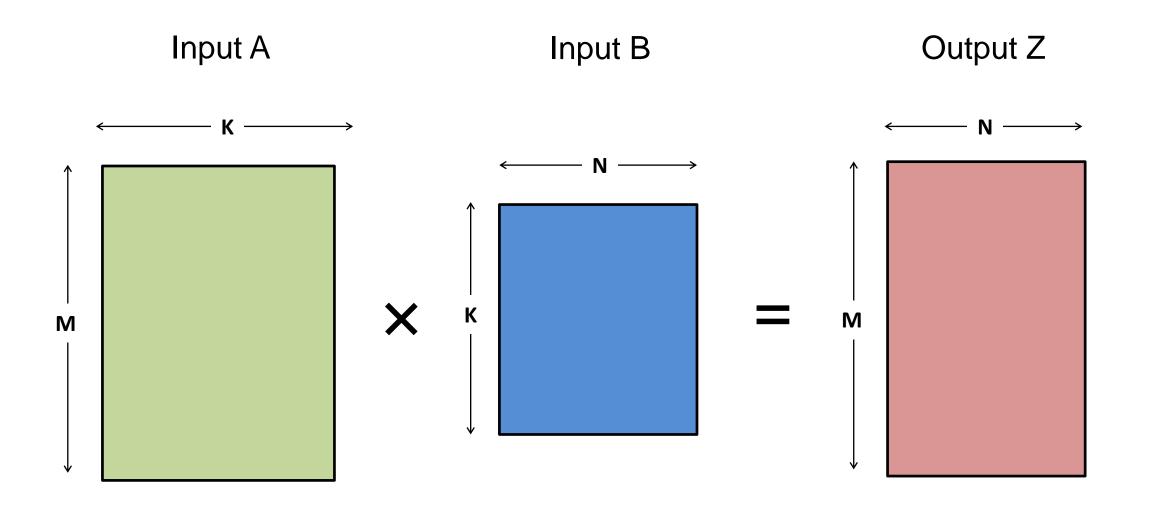


Problem Specification

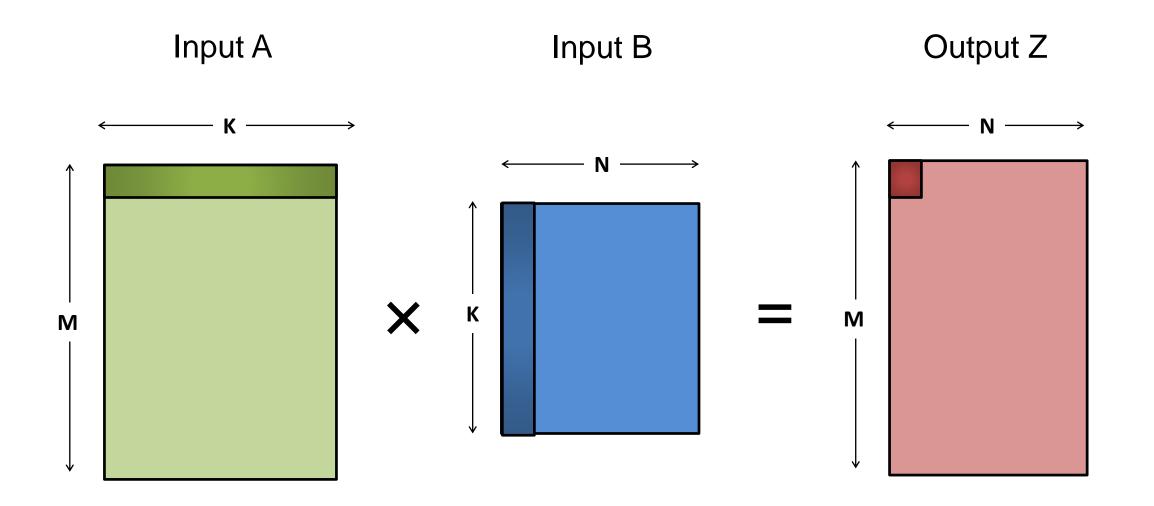
Modeling Overview



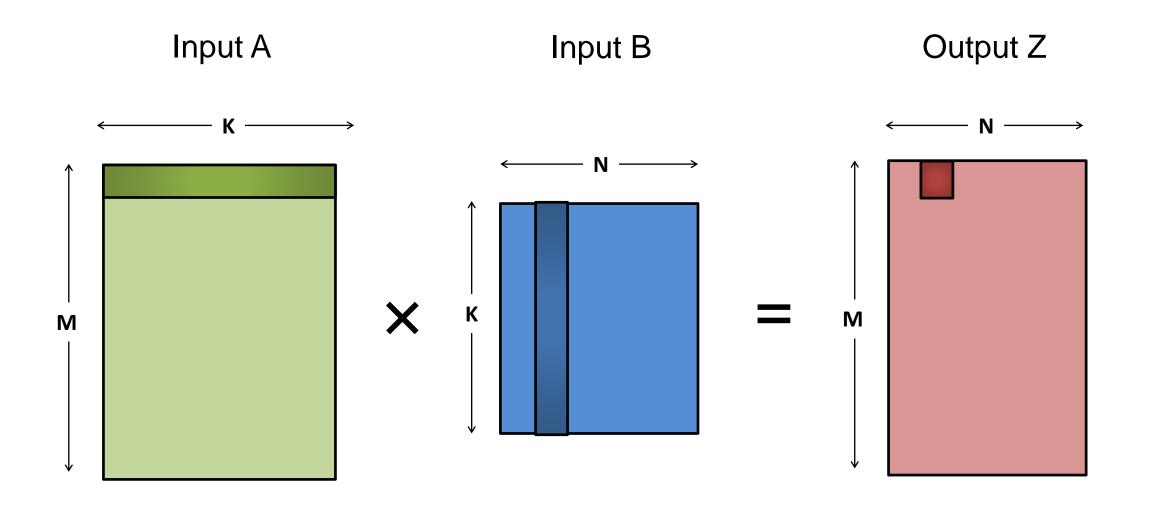
Tensor Matrix Multiplication



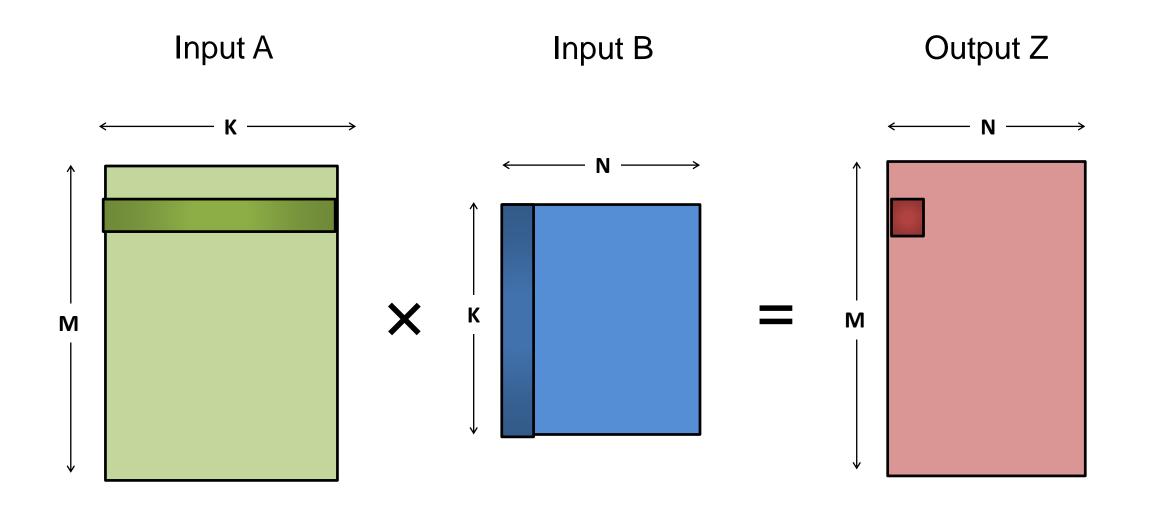
Matrix Multiplication Tensor Computation



Matrix Multiplication Tensor Computation



Matrix Multiplication Tensor Computation



Matrix Multiply - Loop Nest

```
for m in [0, M):
    for n in [0, N):
        for k in [0, K):
            Z[m][n] += A[m][k] × B[k][n]
```


Matrix Multiply - Einsum

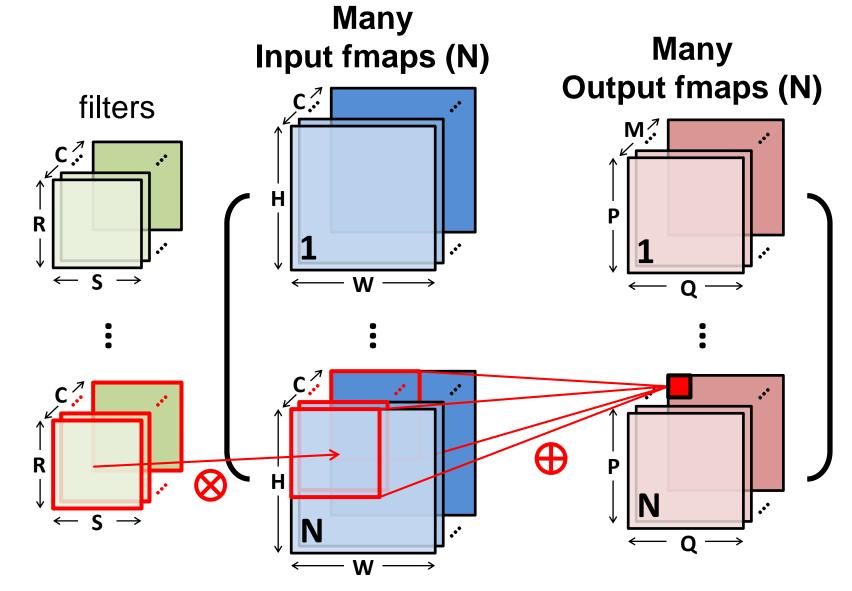
$$Z_{m,n} = A_{m,k} \times B_{k,n}$$

m, n - uncontracted dimensions k - contracted dimension

Matrix Multiply - Instance Specification

- M Height of input A and output Z, e.g., M=256
- K Width of input A and height of input B, e.g., K=128
- N Width of input B and output Z, e.g., N=64

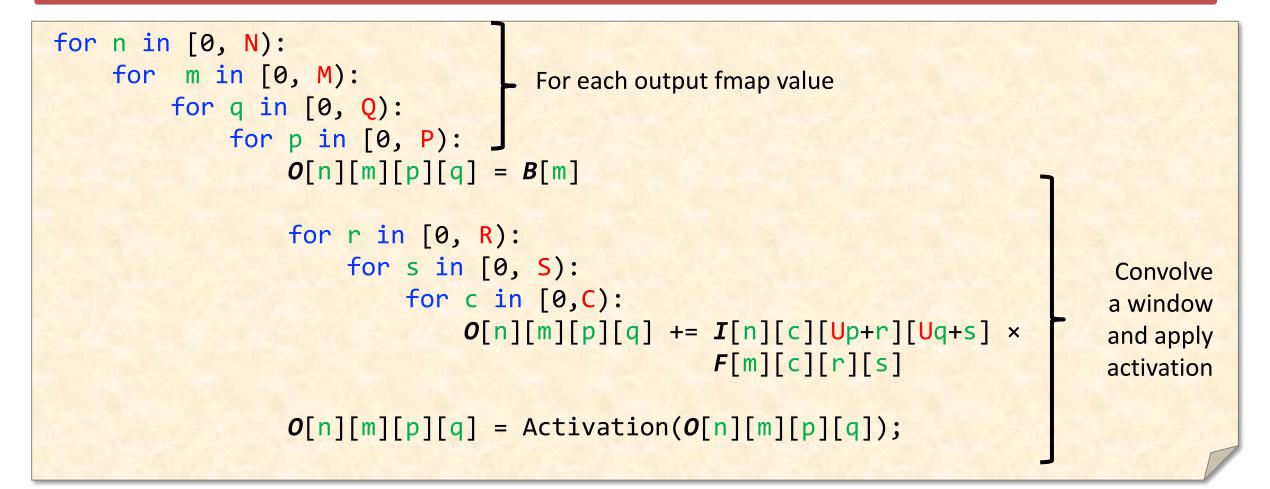
Tensor Convolution



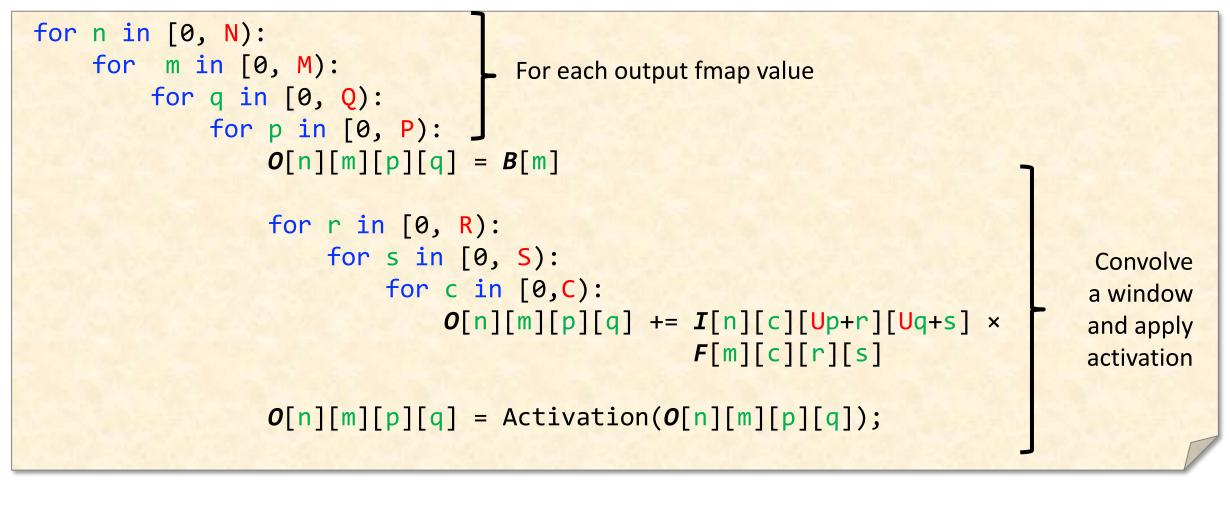
June 19, 2021

Batch Size (N)

Convolution - Loop Nest



Convolution - Einsum



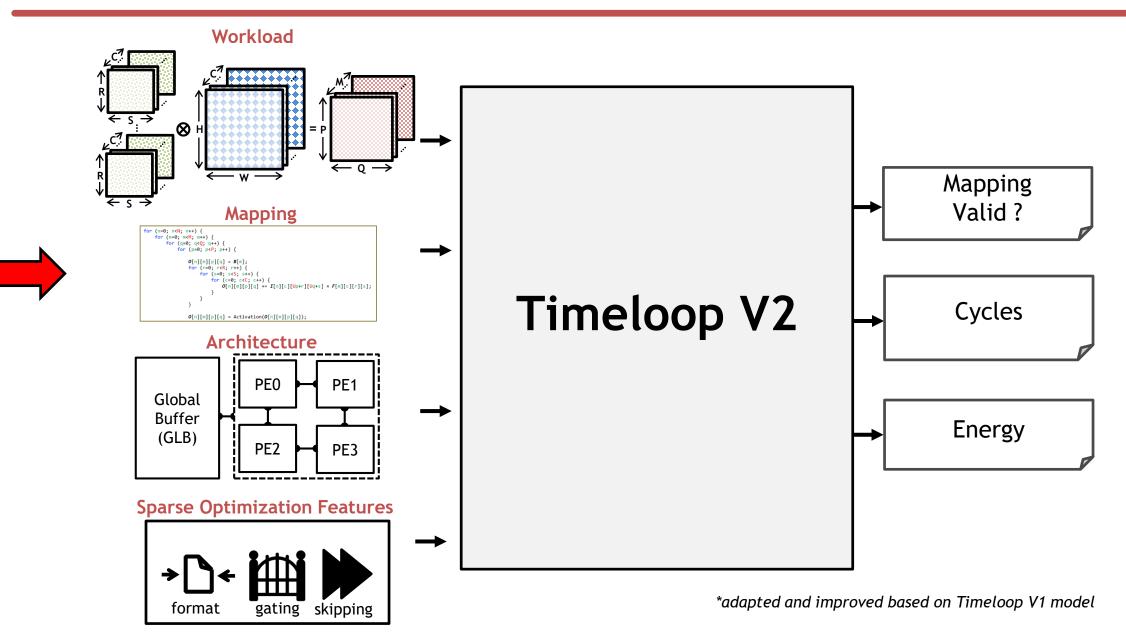
$$O_{n,m,p,q} = I_{n,c,(p+r),(q+s)} \times F_{m,c,r,s}$$

Convolution - Instance Specification

- N Number of input fmaps/output fmaps (batch size)
- C Number of channels in input fmaps (activations) & filters (weights)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of filter (weights)
- S Width of filter (weights)
- M Number of channels in output fmaps (activations)
- P Height of output fmap (activations)
- Q Width of output fmap (activations)
- U Stride of convolution

Schedule Specification

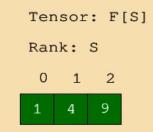
Modeling Overview

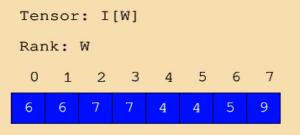


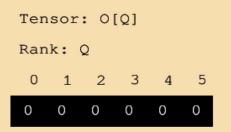
Weight stationary dataflow

 $O_q = I_{(q+s)} \times F_s$

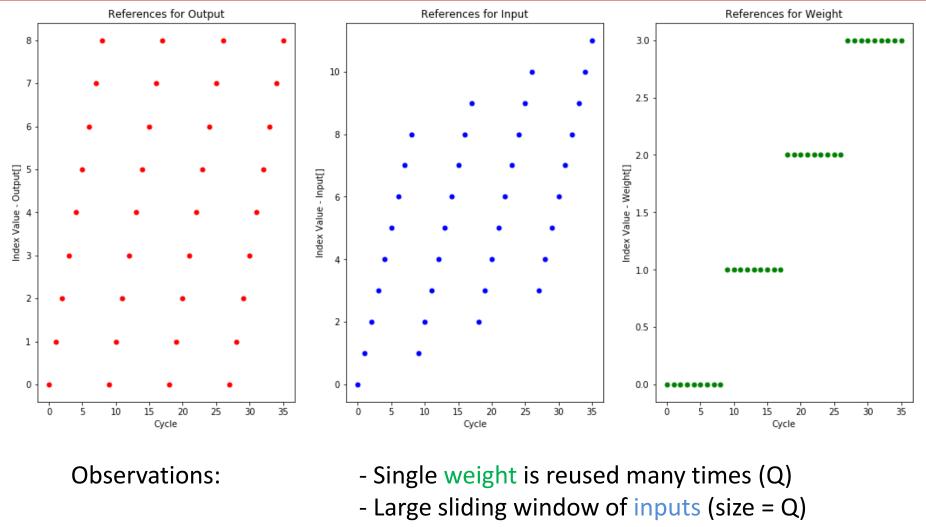
<pre>Tensor i[W]; Tensor f[S]; Tensor o[Q];</pre>	<pre># Input activations # Filter weights # Output activations</pre>
for s in [0, for q in o[q]	







Weight Stationary - Reference Pattern



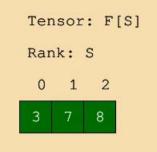
- Fixed window of outputs (size = Q)

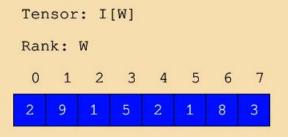
Parallel Weight Stationary - Animation

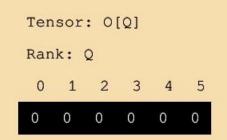
 $O_q = I_{(q+s)} \times F_s$

<pre>Tensor i[W];</pre>	<pre># Input activations</pre>
<pre>Tensor f[S];</pre>	# Filter weights
Tensor o[Q];	<pre># Output activations</pre>

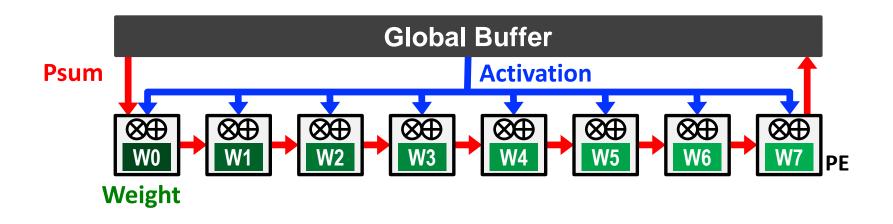
```
parallel-for s in [0, S):
    for q in [0, Q):
        0[q] += i[q+s]*f[s];
```







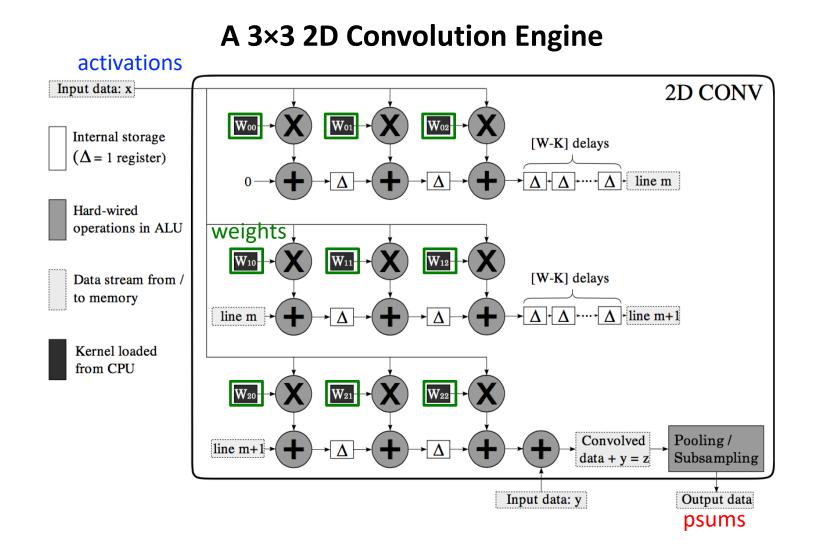
Weight Stationary (WS)



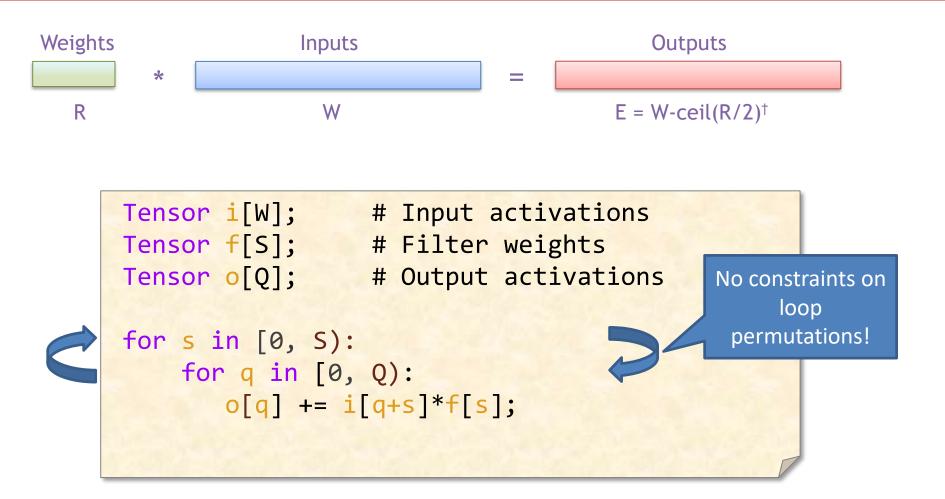
- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate psums spatially across the PE array.

Weights are in the outer loop

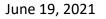
WS Example: nn-X (NeuFlow)



1-D Convolution - Weight Stationary



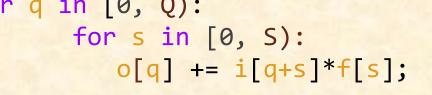
[†] Assuming: 'valid' style convolution



1-D Convolution

 $O_q = I_{(q+s)} \times F_s$

<pre>Tensor i[W];</pre>	#	Input activations			
Tensor f[S];	#	Filter weights			
Tensor o[Q];	#	Output activations			
for q in [0, Q):					



	Tensor: F[S]					
	Rank: S					
	0	1	2			
	1	4	9			
Tensor:	I[W]				

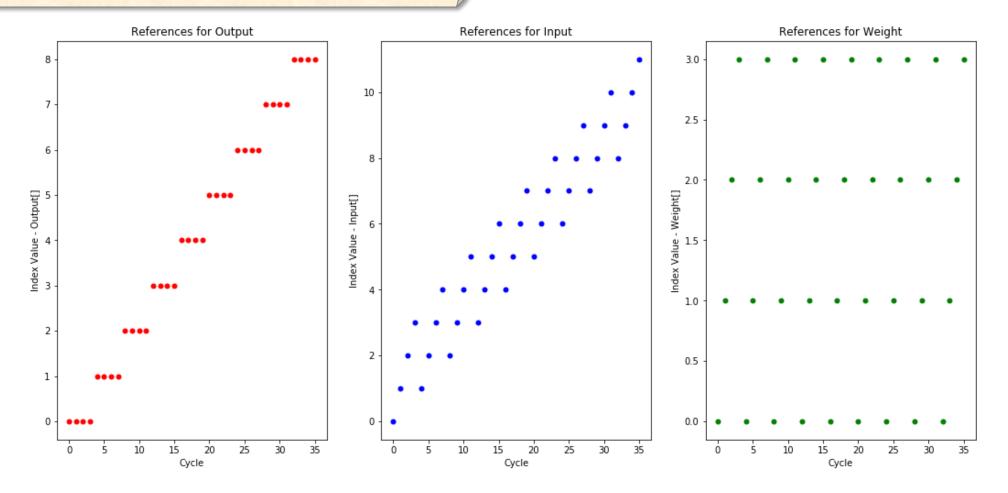
Rank: W

0 1 2 3 4 5 6 7

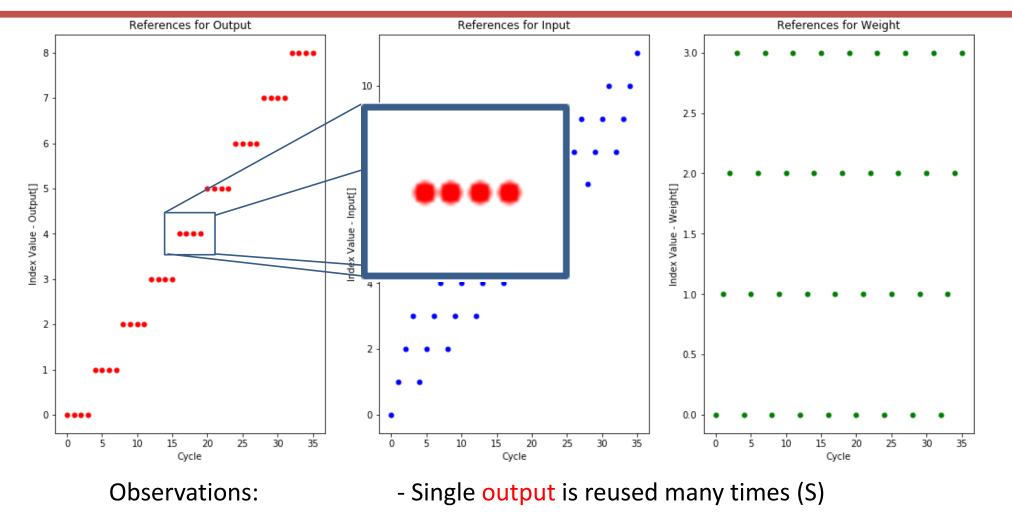
Output Stationary - Reference Pattern

for q in [0, Q):
 for s in [0, S):
 o[q] += i[q+s]*f[s]

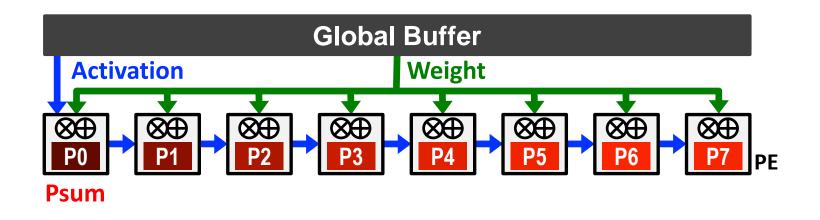
Instance: - S = 4 - Q = 9 - W = 12



Output Stationary - Reference Pattern

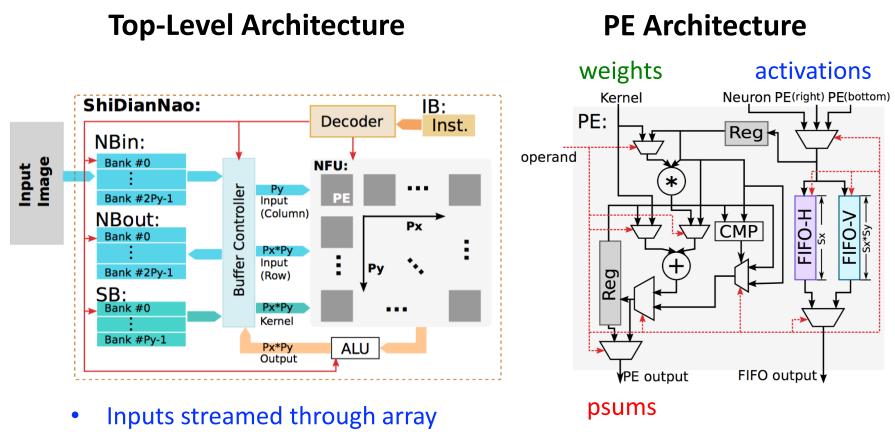


Output Stationary (OS)



- **Minimize partial sum** R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array

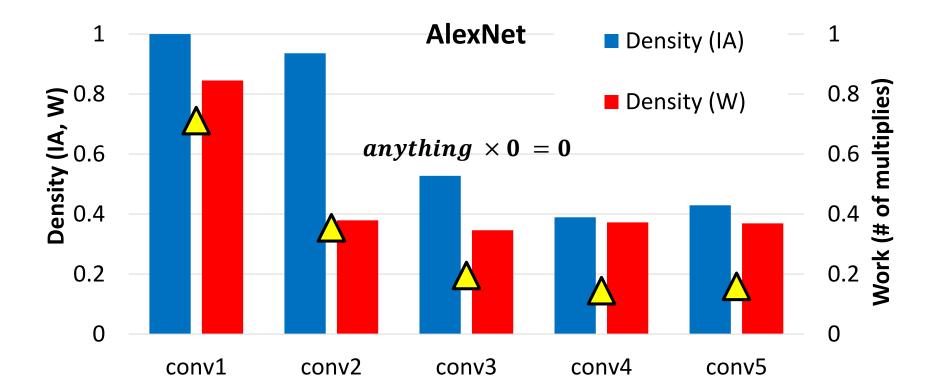
OS Example: ShiDianNao



- Weights broadcast
- Partial sums accumulated in PE and streamed out

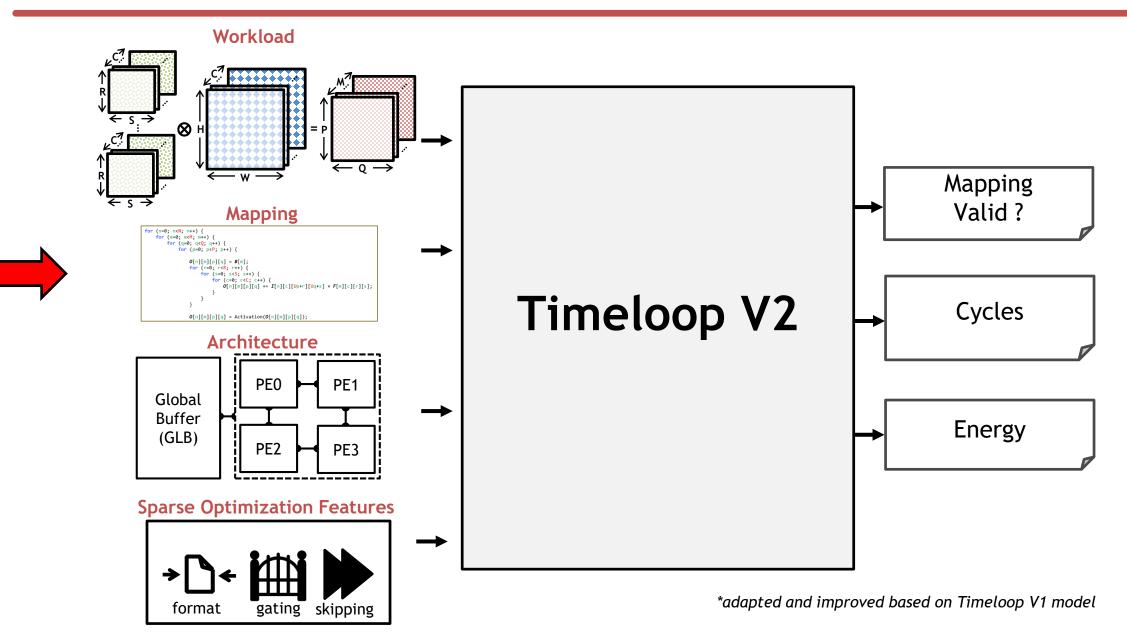
Motivation

• Leverage CNN sparsity to improve energy-efficiency

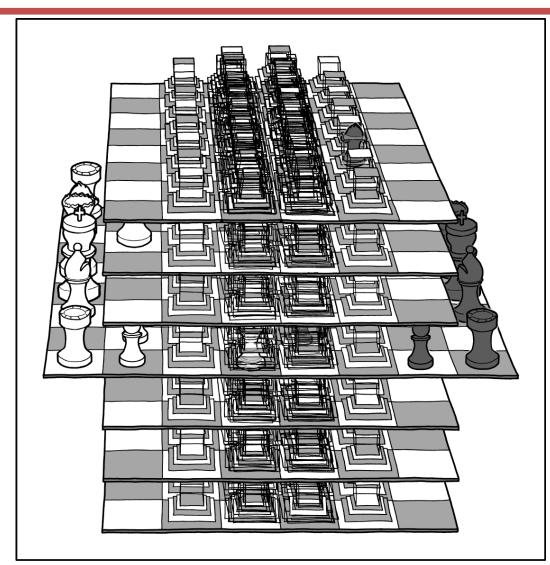


Tensor Abstraction

Modeling Overview

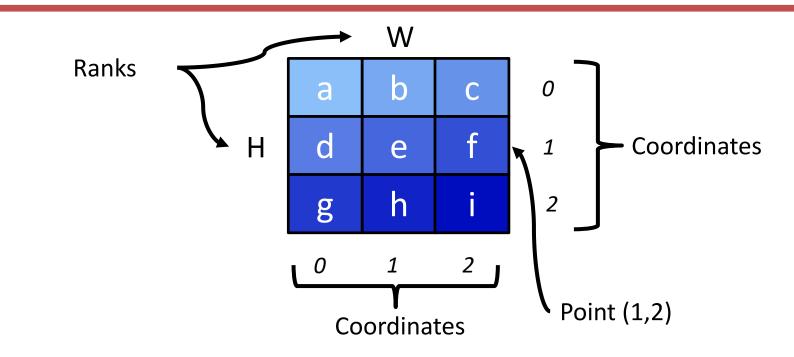


"In Dimensional Chess, every move is annotated '?!'."

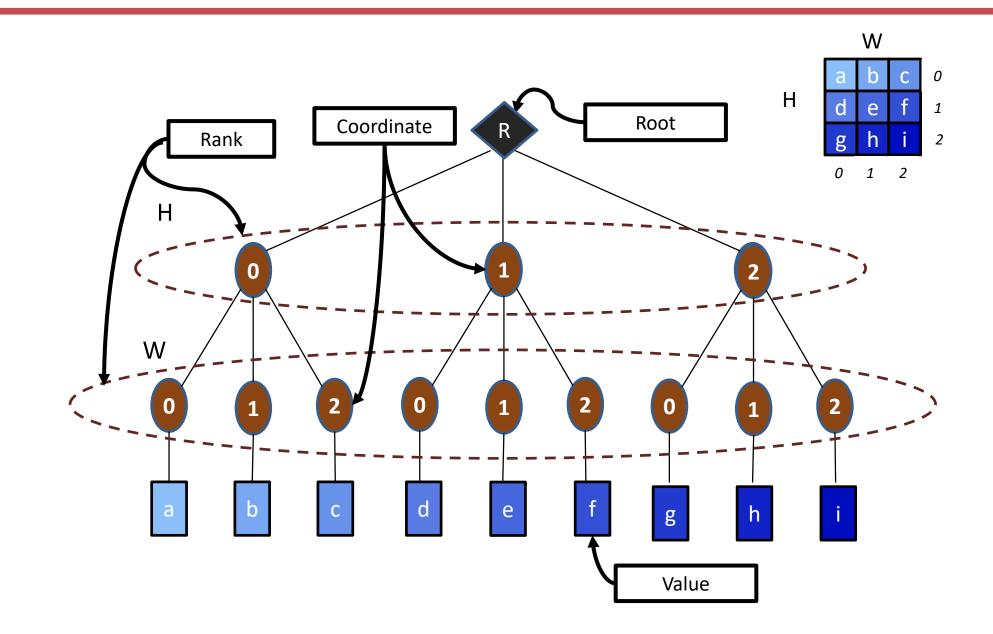


THE PROBLEM WITH N-DIMENSIONAL CHESS IS THAT N IS A CONSTANT ACROSS THE BOARD. IN MY NEW VARIANT, EVERY ROW HAS ONE MORE DIMENSION THAN THE ONE BEHIND IT. Source: XKCD/2465

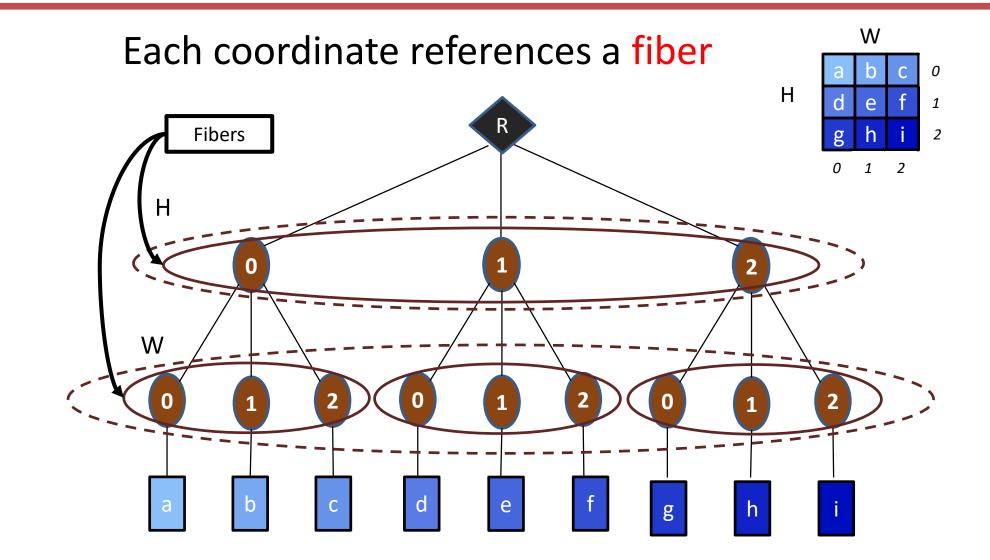
Tensor Data Terminology

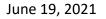


- The elements of each "rank" (dimension) are identified by their "coordinates", e.g., rank H has coordinates 0, 1, 2
- Each element of the tensor is identified by the tuple of coordinates from each of its ranks, i.e., a "point".
 So (1,2) -> "f"

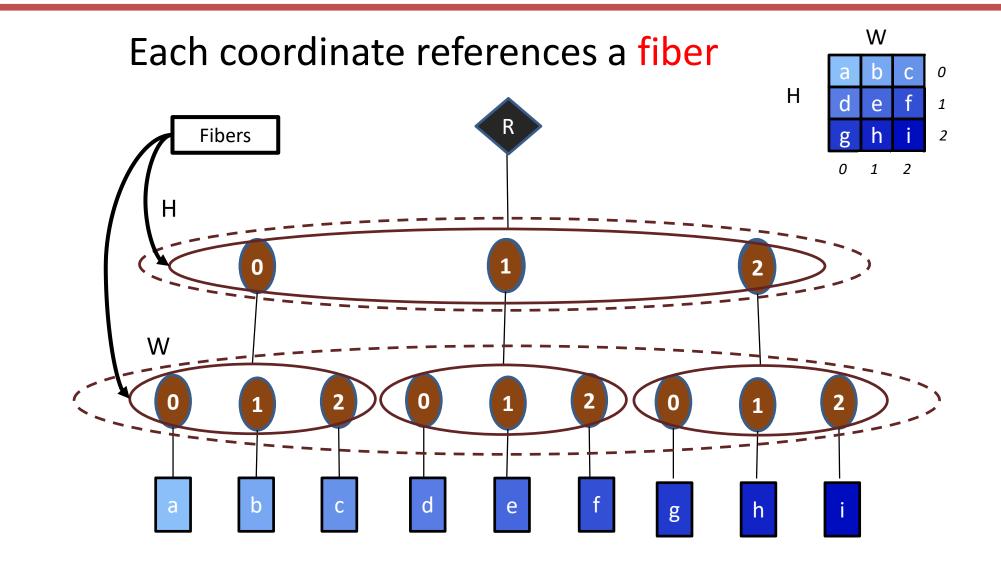


June 19, 2021

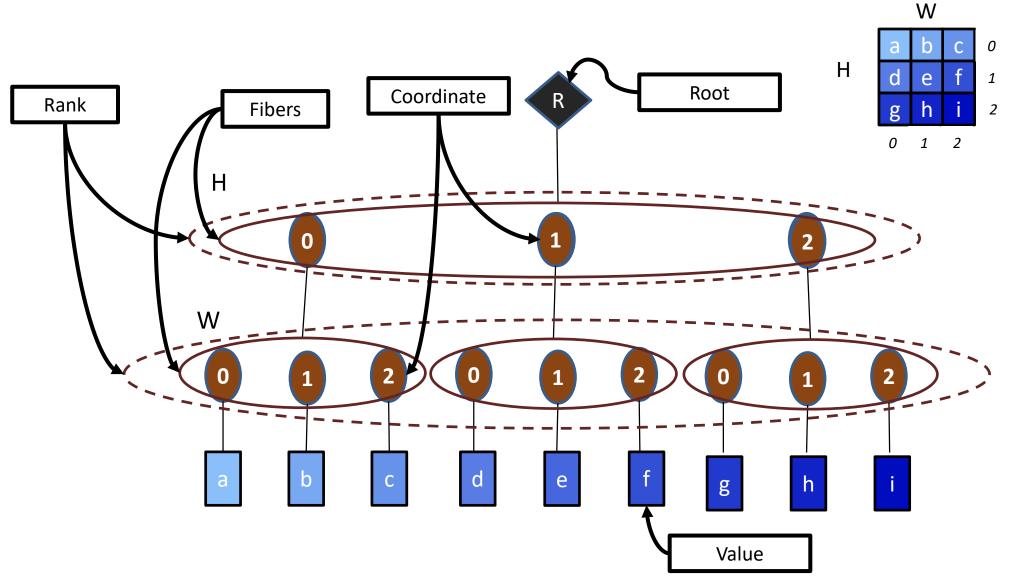




Fiber-Tree Tensor Abstraction



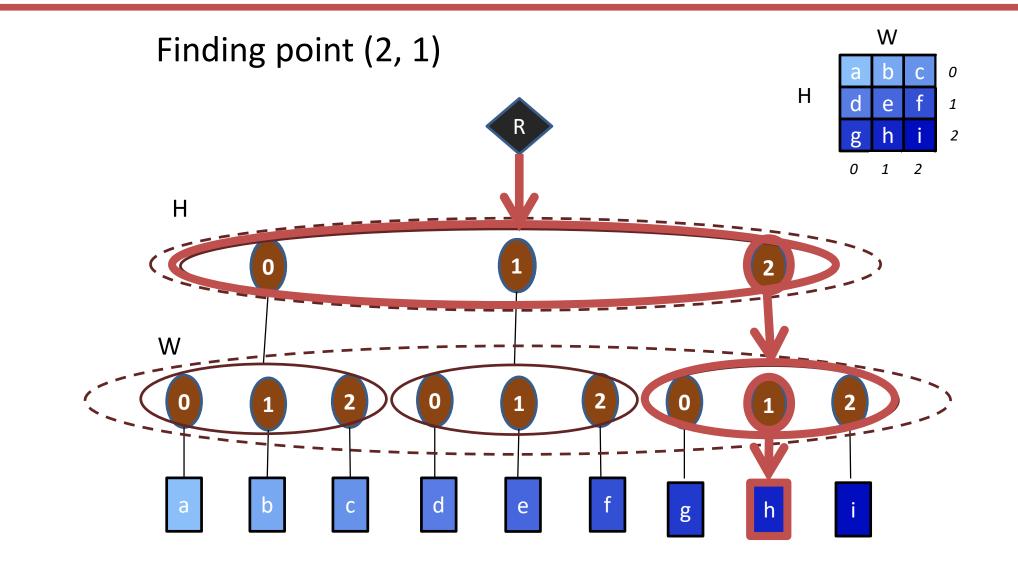
Fiber-Tree Tensor Abstraction

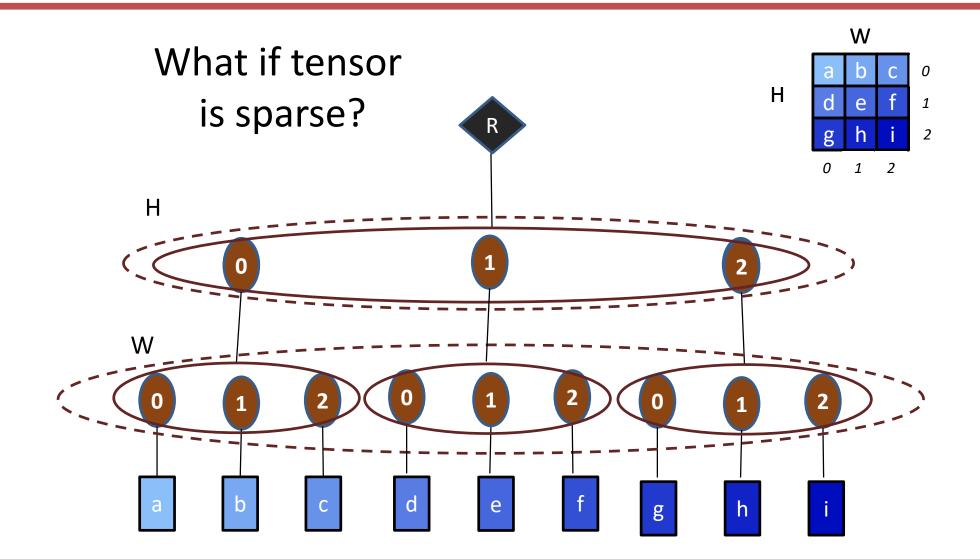


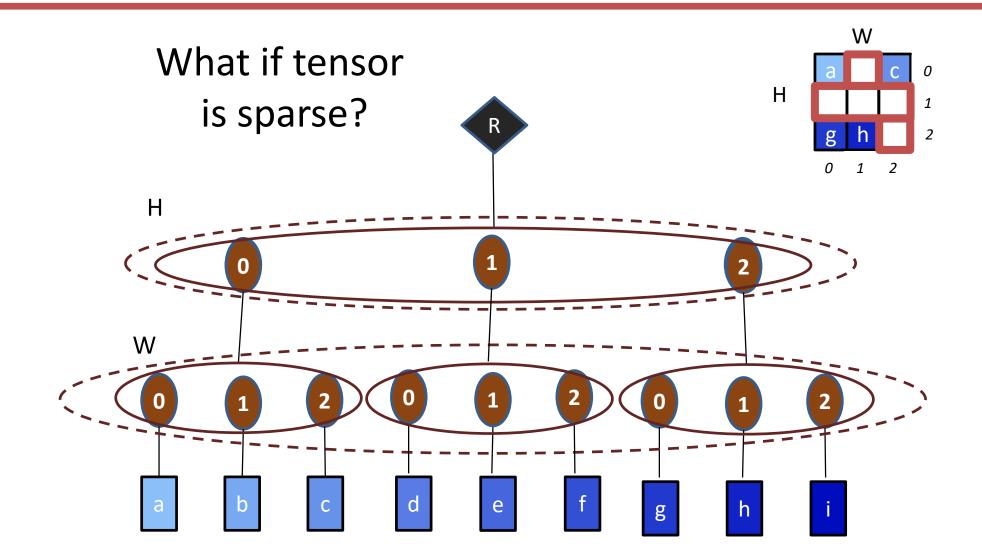
June 19, 2021

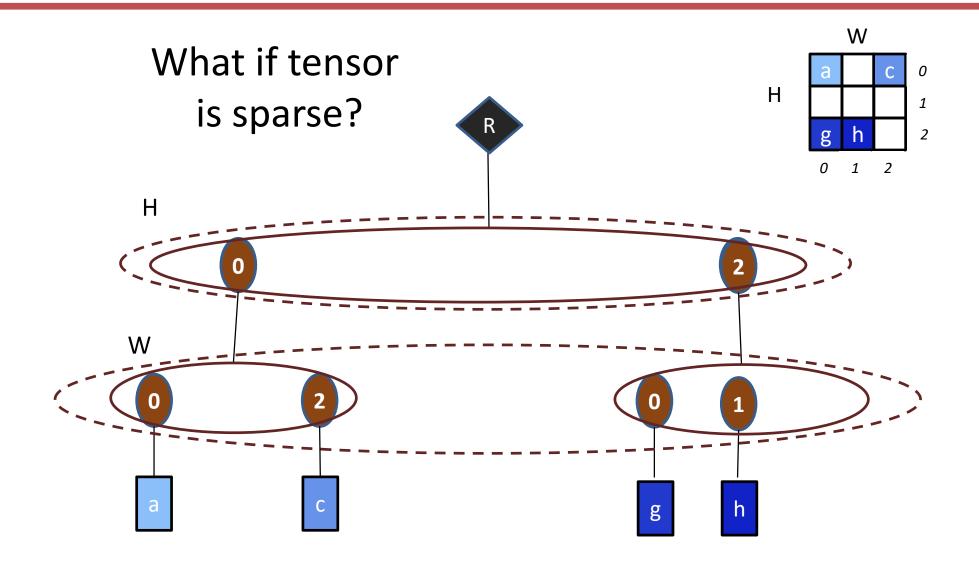
40

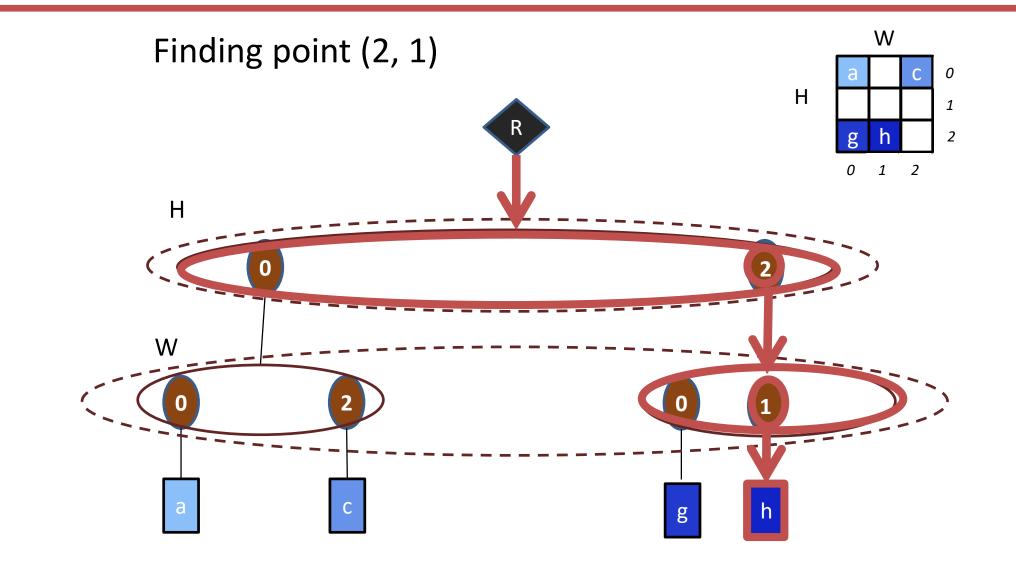
Fiber-Tree Tensor Abstraction







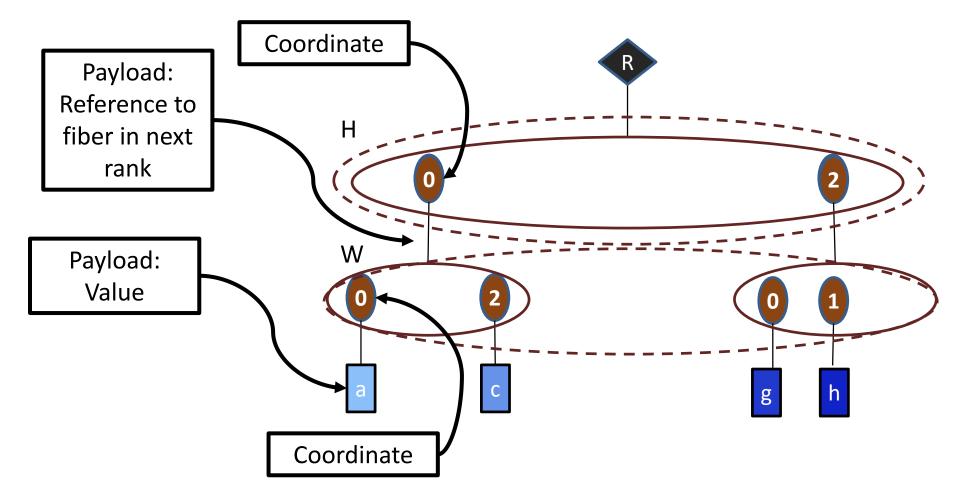




Concrete Fiber Implementations

Information in a Fiber

• Each fiber has a set of (coordinate, "payload") tuples



Example Fiber Representations

Each fiber has a set of (coordinate, "payload") tuples Coordinate/Payload List Array Payload Coordinate 3 5 8 Payload 0 1 2 3 4 5 6 7 8 0 1 2 3 Position and coordinate Position

Data in a fiber is accessed by its position or offset in memory

Fiber Representation Choices

- Implicit Coordinates
 - Uncompressed (no metadata required)
 - Compressed e.g., run length encoded
- Explicit Coordinates
 - E.g., coordinate/payload list
- Compressed vs Uncompressed
 - Compressed/uncompressed is an attribute of the representation*.
 - Uncompressed means size is proportional to maximum coordinate value
 - Compressed formats will have metadata overhead relative to uncompressed formats. For dense data, this may cost more than just using an uncompressed format.
 - Space efficiency of a representation depends on sparsity

Compressed Implicit Coordinate Representations

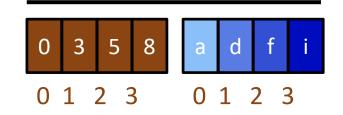
- "Empty" coordinate compression via zero-run encoding
 - Run-length coding (RLE)
 - (run-length of zeros, non-zero payload)...
 - Significance map coding
 - (flag to indicate if non-zero, non-zero payload)...

- Payload encoding
 - Fixed length payload
 - Variable length payload
 - E..g., Huffman coding

Compressed Explicit Coordinate Representations

- Coordinate list representation
 - Struct of arrays form

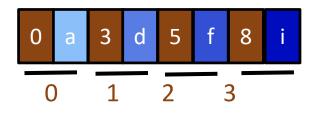
 (coordinate of non-zero value)...
 (non-zero payload)...



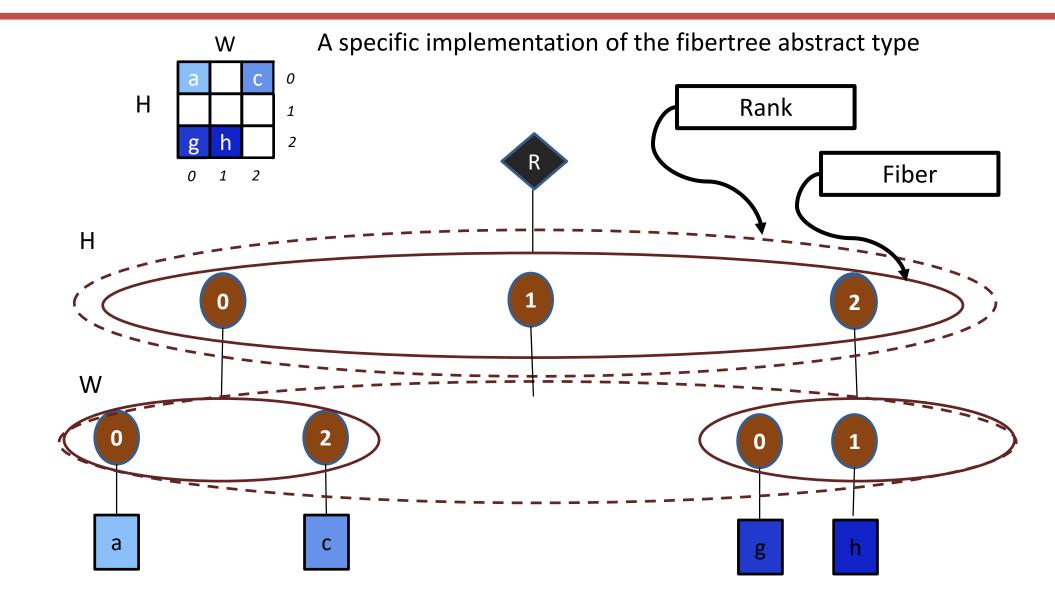
Array of structs form

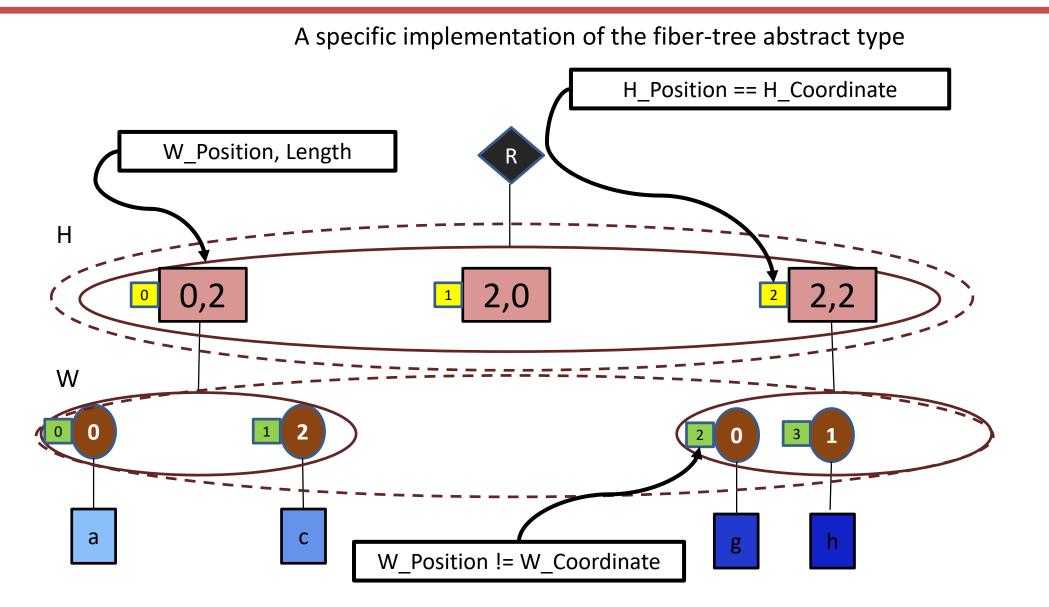
(coordinate of non-zero value, non-zero payload)...

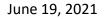
- Payload encoding
 - Explicit
 - Immediate value
 - Pointer
 - Implicit
 - Offset of coordinate is offset of payload

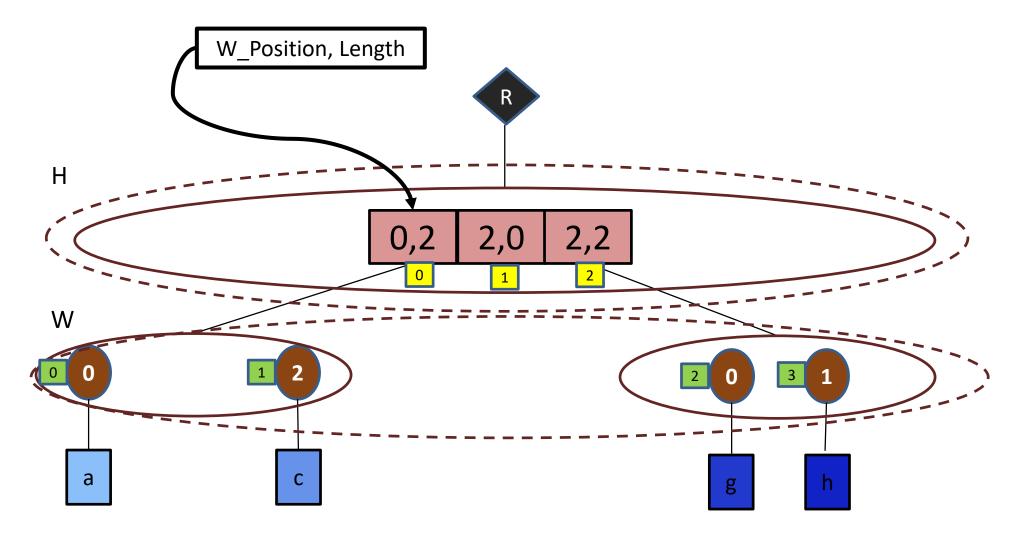


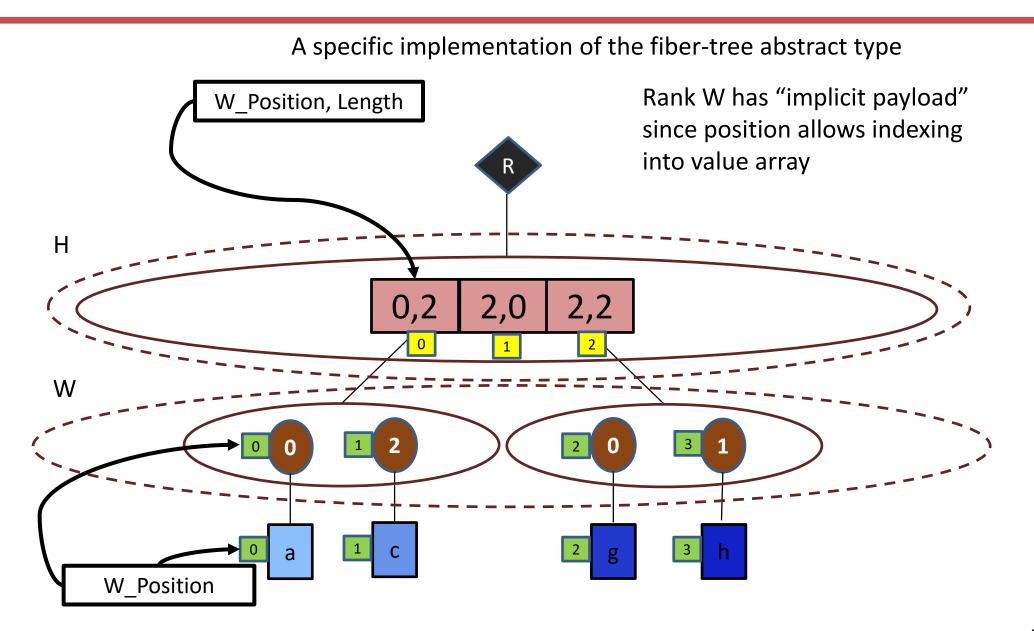
Black bar show scope of struct

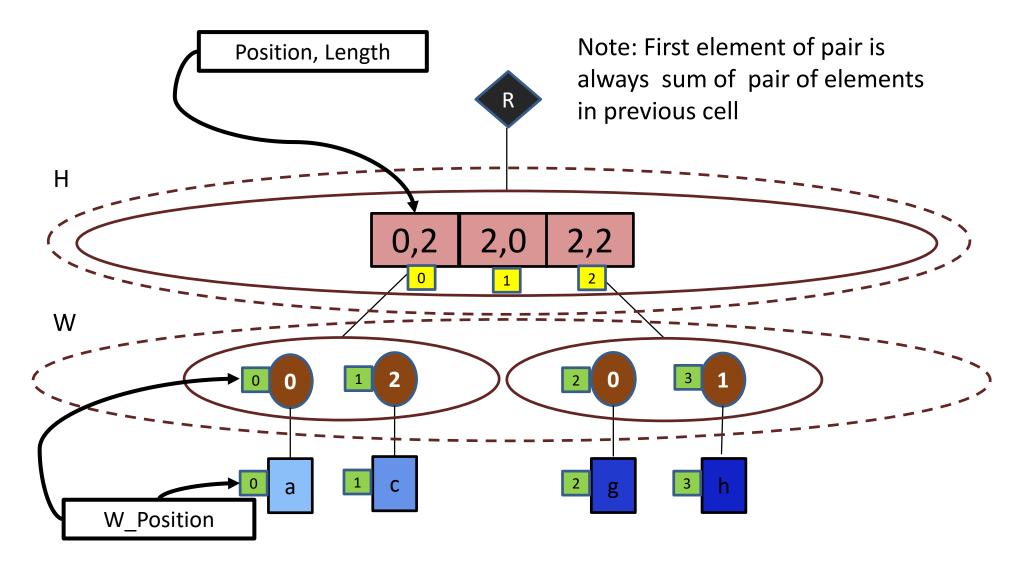


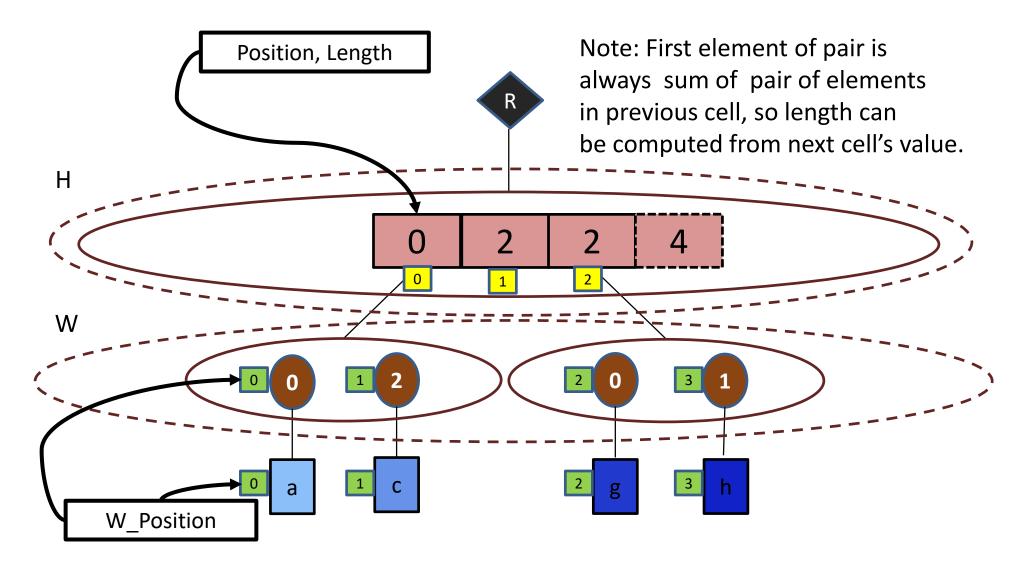


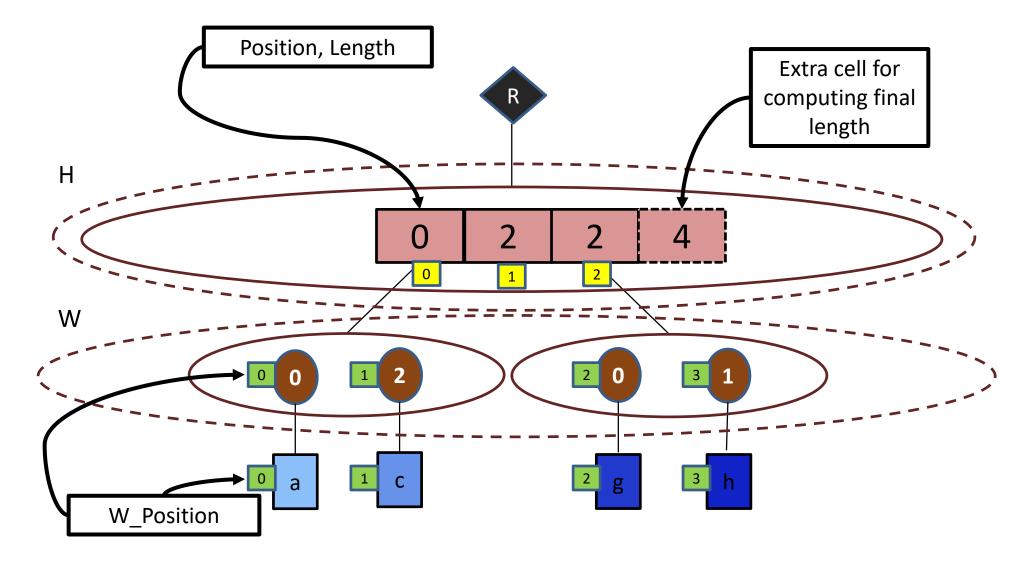


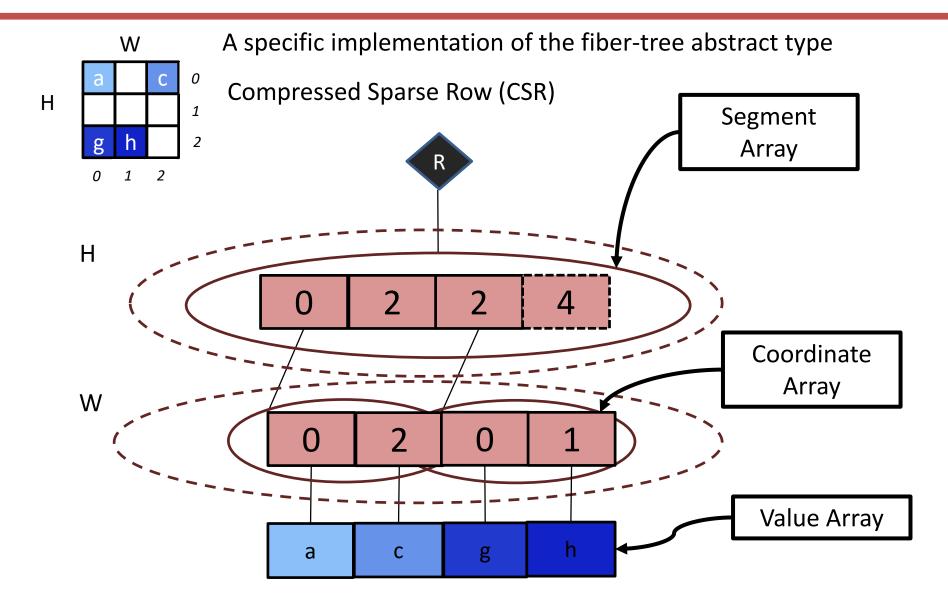












Explicit Coordinate Representations

- Coordinate/Payload list
 - (coordinate, non-zero payload)...
 (array of structs)
 - (coordinate)..., (non-zero payload)... (struct of arrays)
- Hash table (per fiber)
 - (coordinate -> payload) mapping
- Hash table (per rank)
 - (fiber_id, coordinate -> payload) mapping
- Bit vector of non-zero coordinates
 - Uncompressed payload

Per Rank Tensor Representations

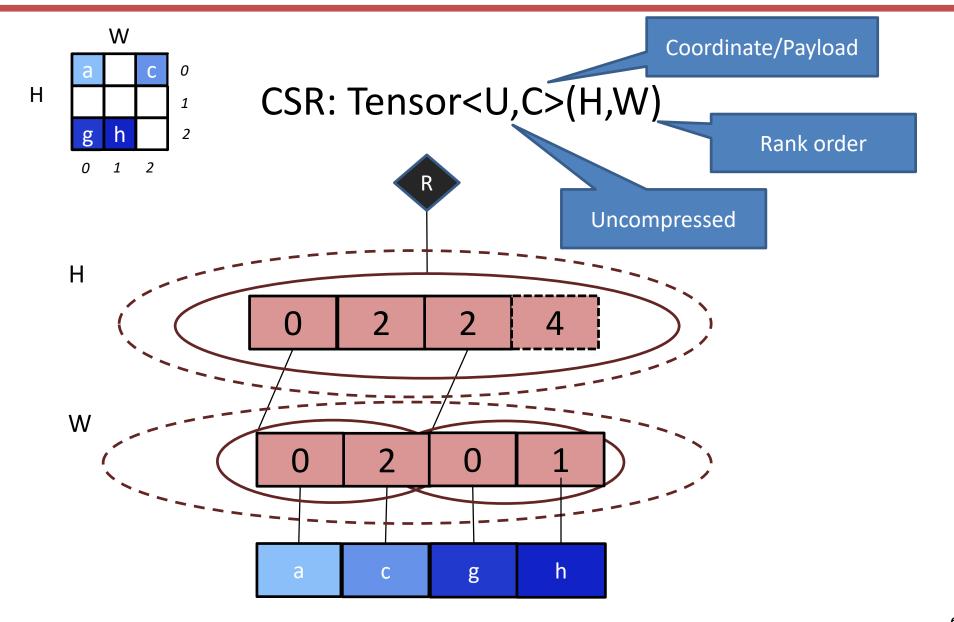
- Uncompressed [U]

•

- Run-length Encoded [R]
 - ٠
- Coordinate/Payload List [C]
- Hash Table (per rank) [H_r]
- Hash Table (per fiber) $[H_f]$
- Tagged union of any combination of previous types

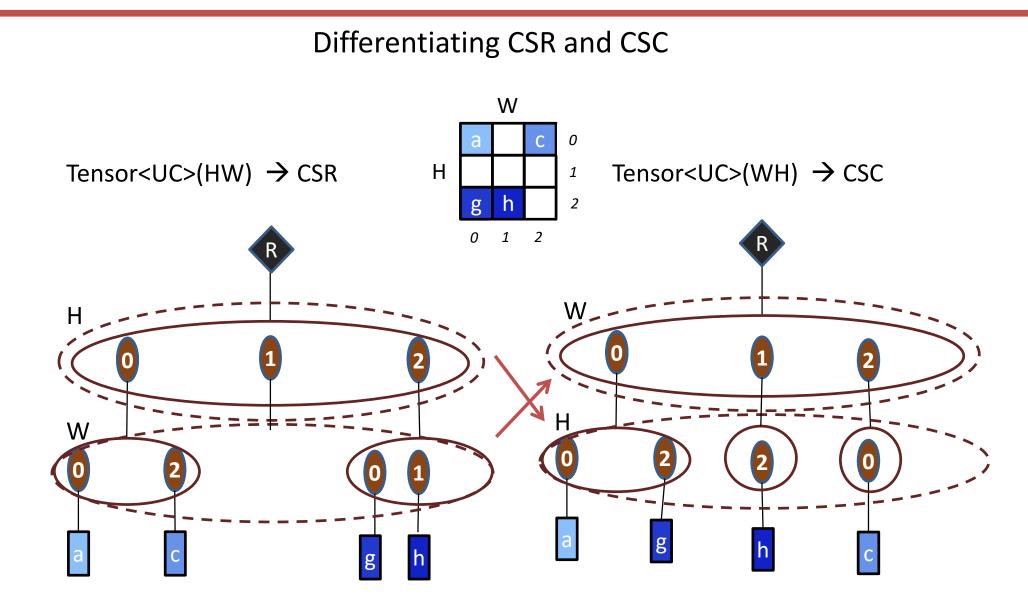
Inspired by collaboration with Kjolstad in [Kjolstad, OOPSLA17], [Chou, OOPSLA18]

Notation for CSR



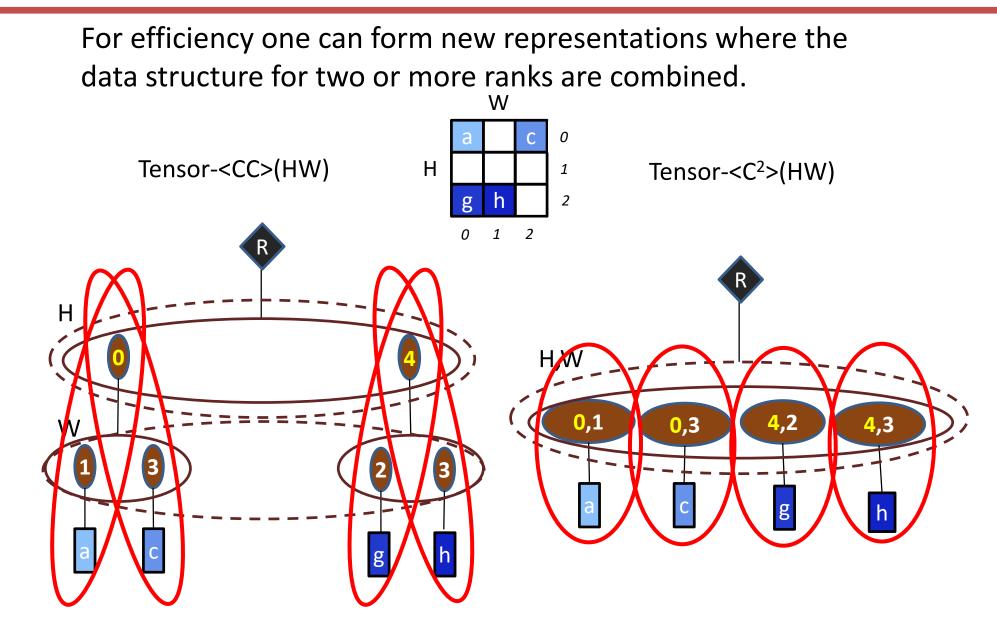
June 19, 2021

Representation of Order of Ranks



June 19, 2021

Merging Ranks



Merging Ranks

- For efficiency one can form new representations where the data structure for two or more ranks are combined:
- Examples:
 - Tensor-(C²)

List of (coordinate tuple, payload) - COO

- Tensor-(H²)
 - Hash table with coordinate tuple as key
- Tensor-(U²)
 - Flattened array
 - Coordinates can be recovered with modulo arithmetic on "position"
- Tensor-(R²)
 - Flattened run-length encoded sequence

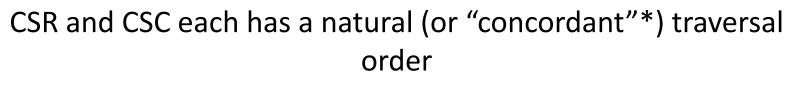
Traversal Efficiency

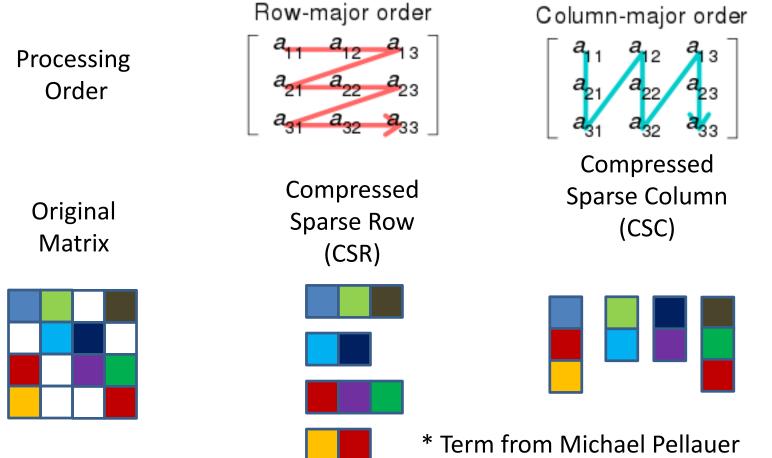
Efficiency of different traversal patterns through the tensor is affected by encoding, e.g., finding the payload for a particular coordinate...

- Operations:
 - maybe(payload) = Fiber.getPayload(coordinate)
 - (coordinate, payload) = Fiber.getNext(rank_traversal_order)

Fiber.next() is a useful iterator and its efficiency is highly dependent on representation, both order of ranks and representation of each rank....

Concordant traversal orders



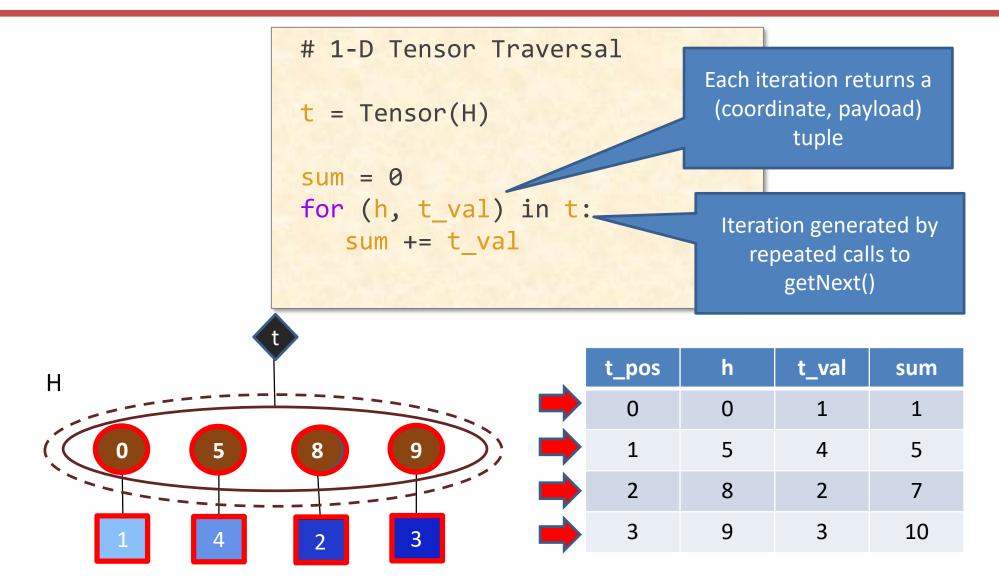


Example Traversal Efficiency

- Efficiency of getPayload():
 - Uncompressed direct reference O(1)
 - Run length encoded linear search O(n)
 - Hash table multiple references and compute O(1)
 - Coordinate/Payload list binary search O(log n)
- Efficiency of getNext() (concordant traversal)
 - Uncompressed sequential reference, good spatial locality O(1)
 - Run length encoded sequential reference O(1)
 - Coordinate/Payload list same as uncompressed
- Efficiency of getNext() (discordant traversal)
 - Essentially as good (or bad) as payload-method....

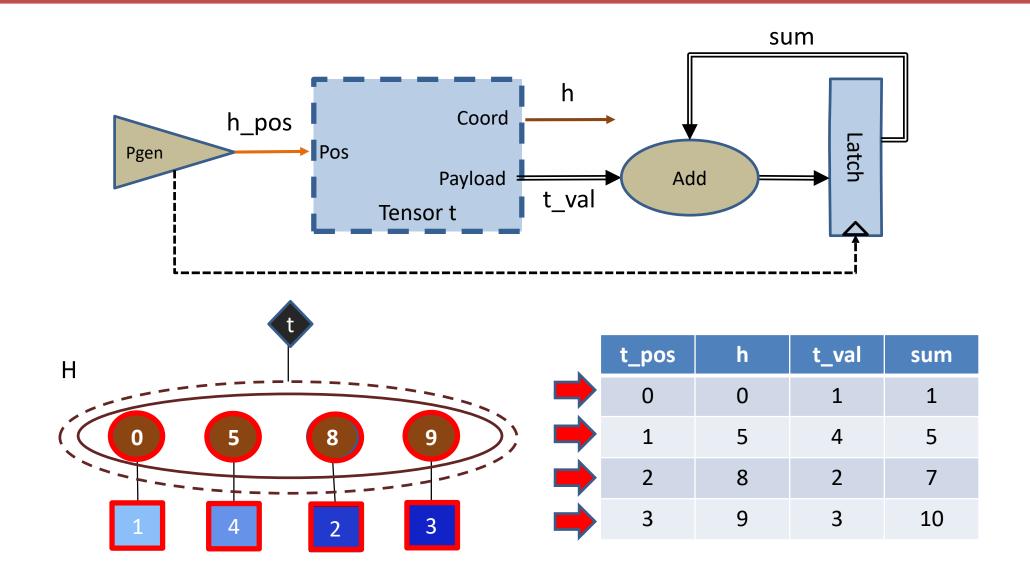
Tensor Traversal Scheduling

Traversing a Sparse Tensor

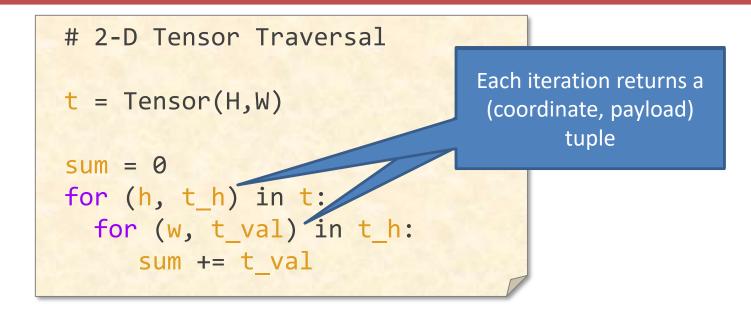


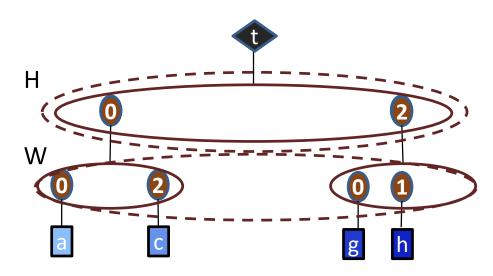
June 19, 2021

Traversing a Sparse Tensor

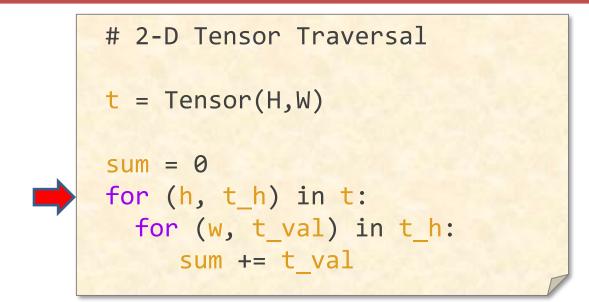


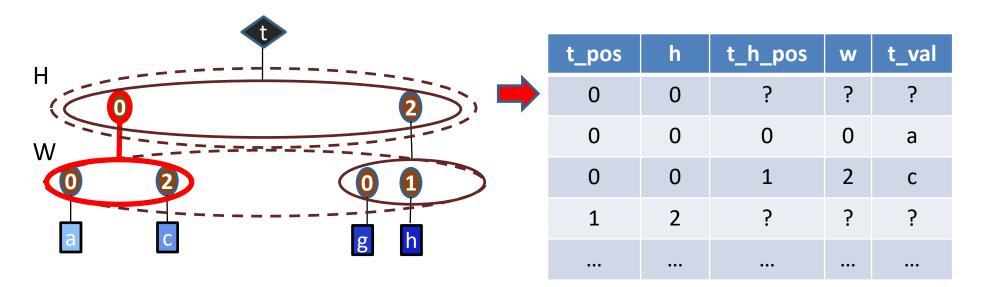
Tensor Traversal (2-D)

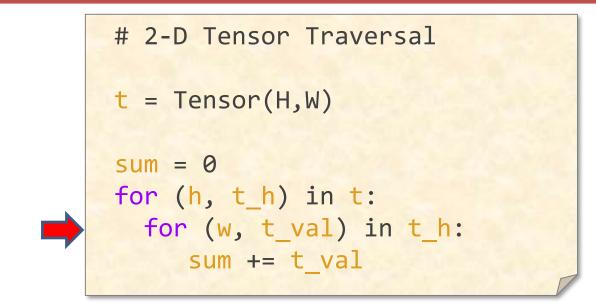


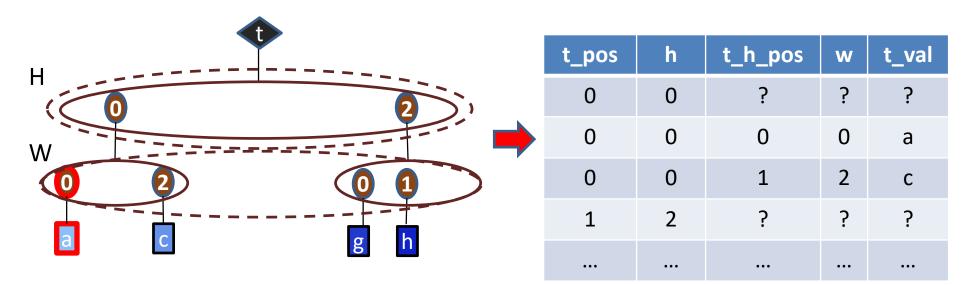


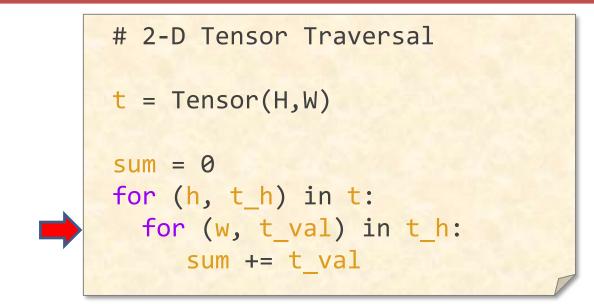
t_pos	h	t_h_pos	w	t_val
0	0	?	?	?
0	0	0	0	а
0	0	1	2	С
1	2	?	?	?
		•••		

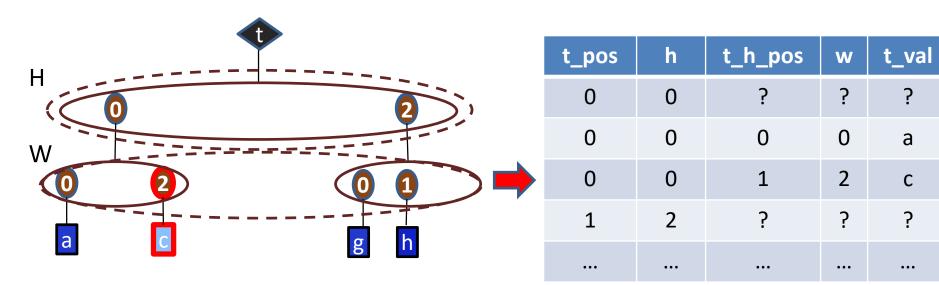












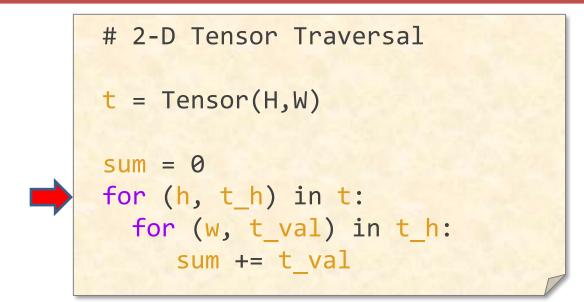
?

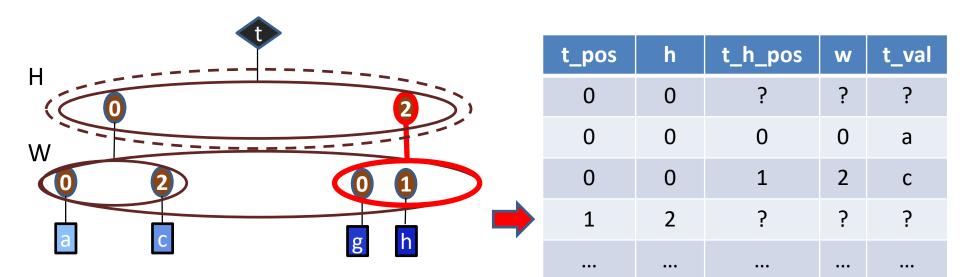
а

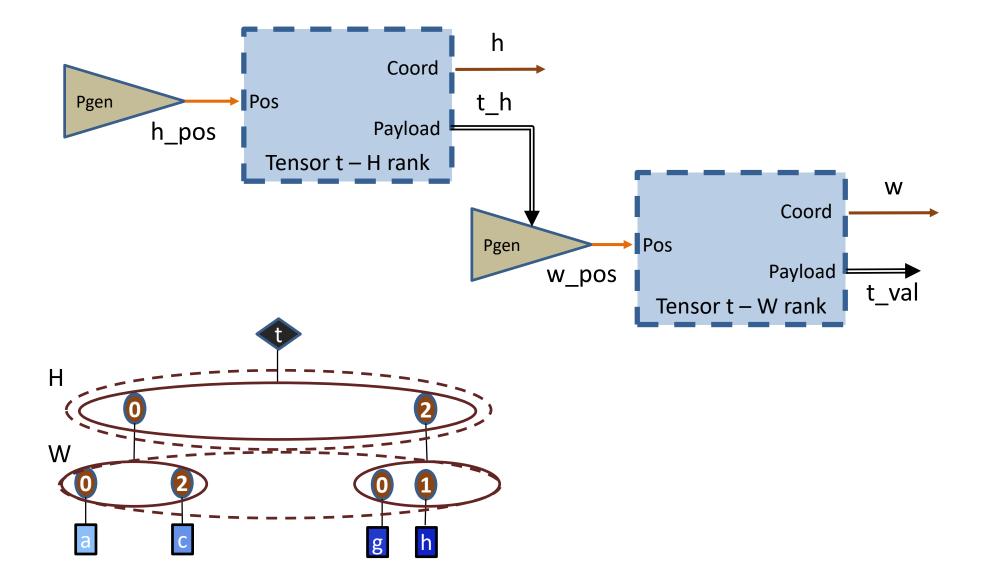
С

?

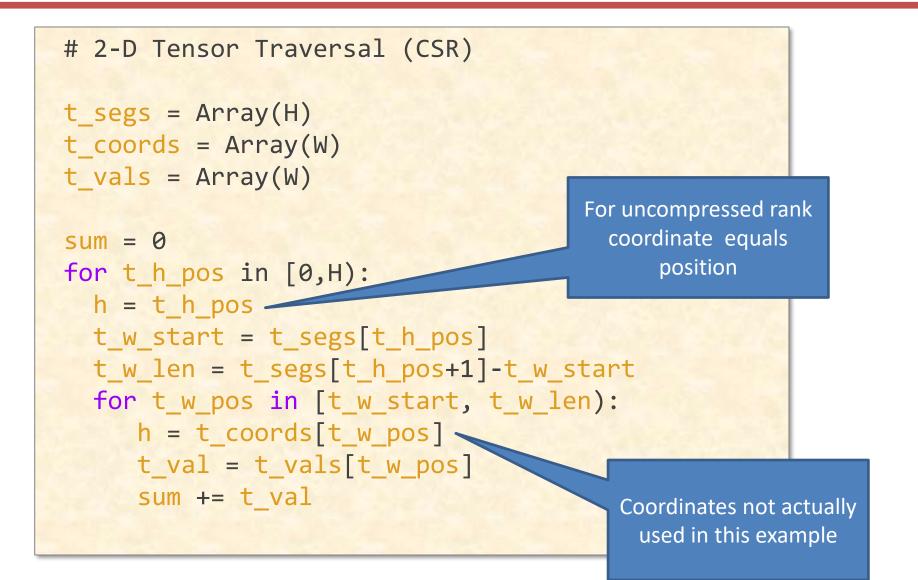
• • •





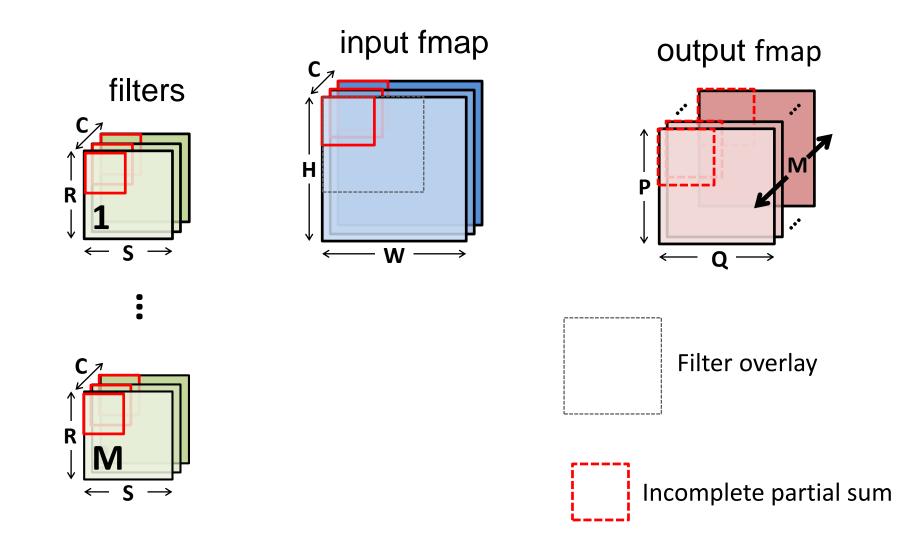


Tensor Traversal (CSR Style)

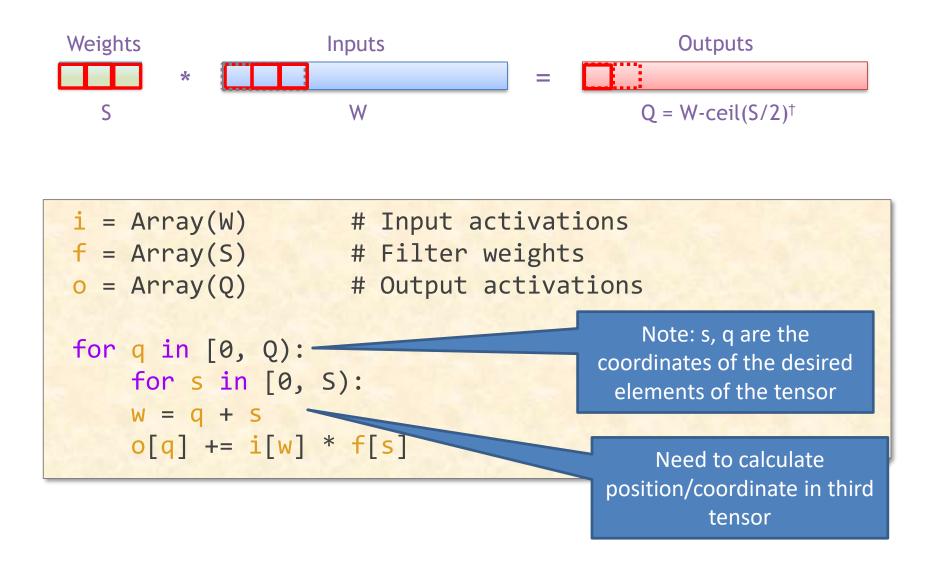


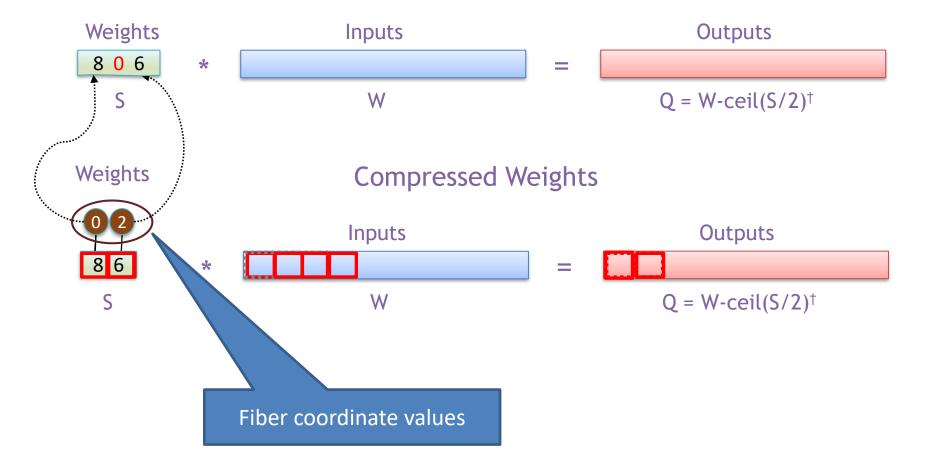
Sparse Tensor Computations

CONV Layer

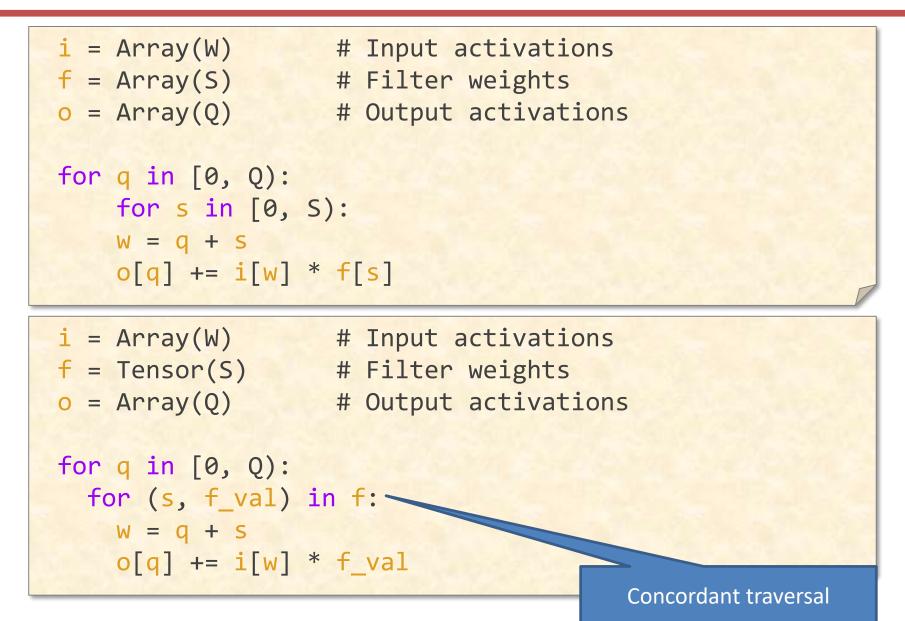


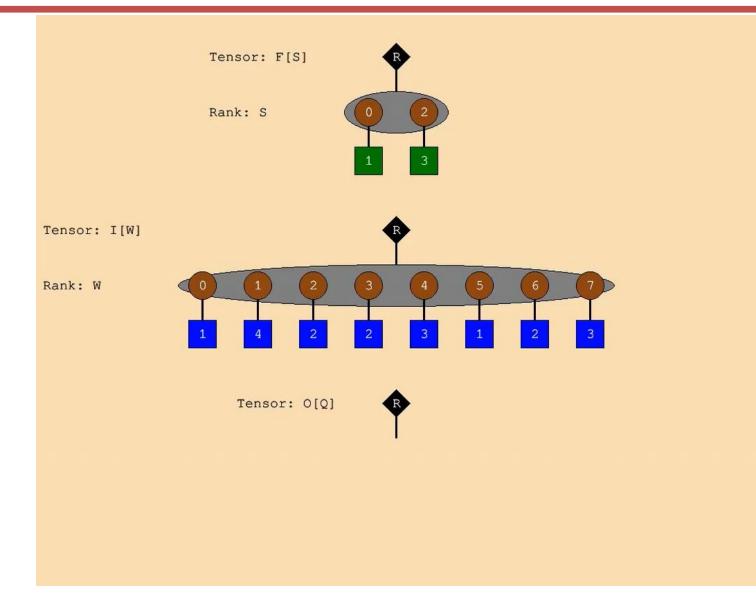
Output Stationary - Uncompressed

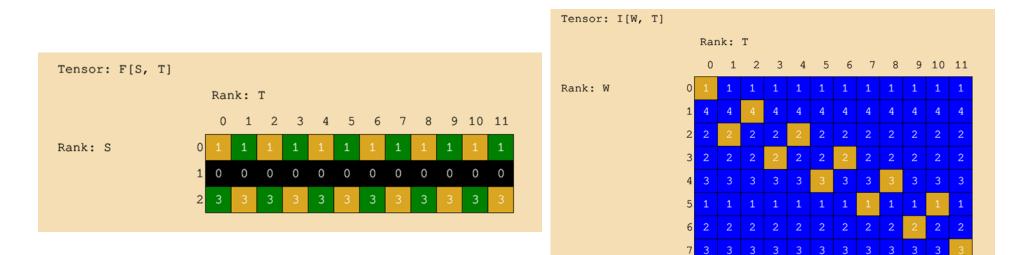


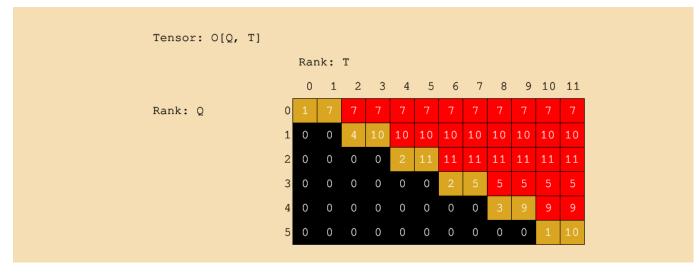


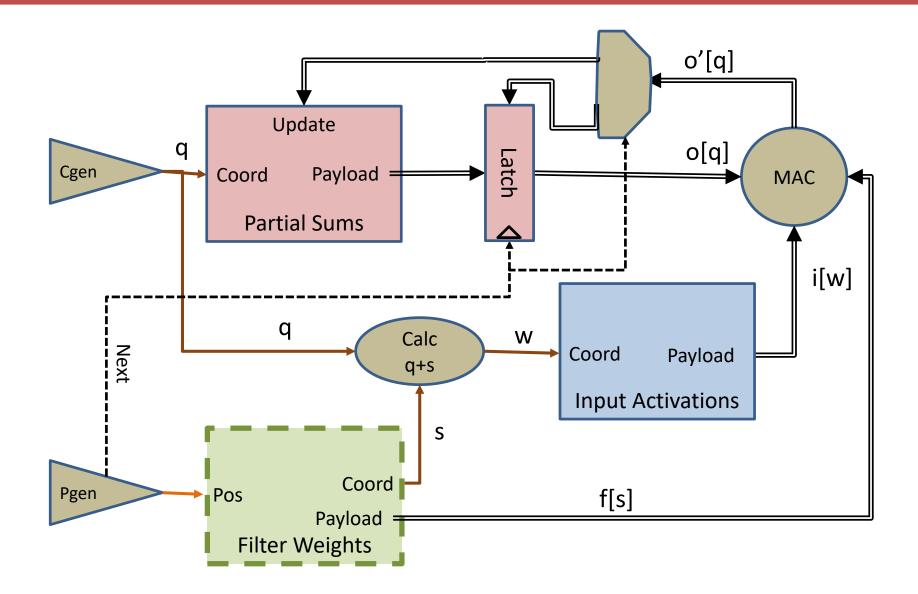
[†] Assuming: 'valid' style convolution



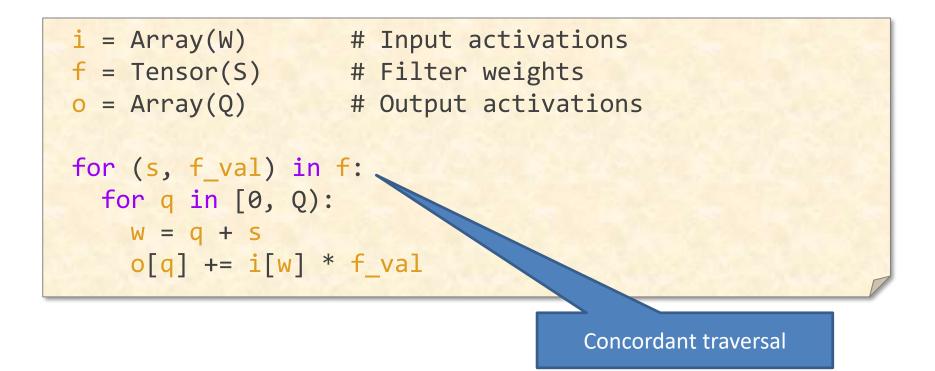




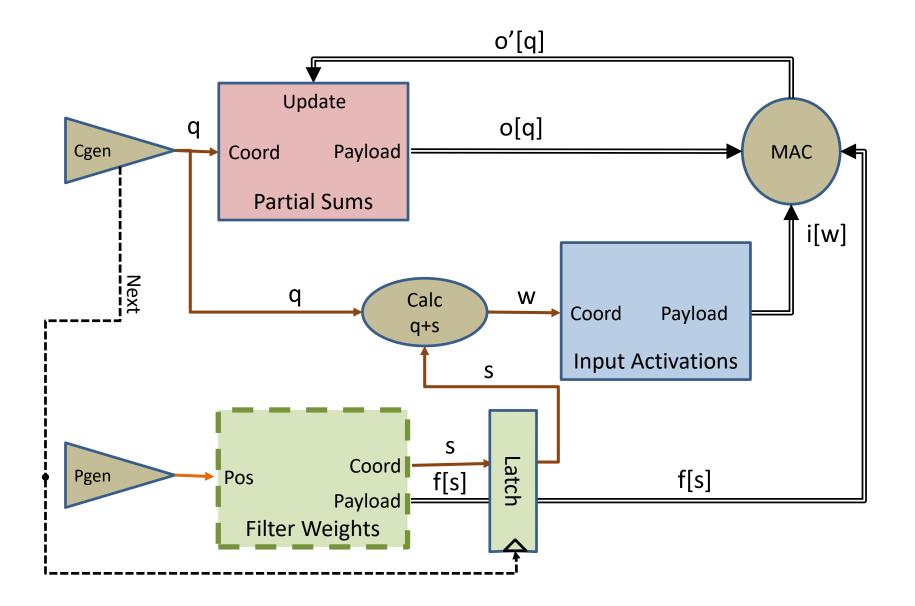




Weight Stationary - Sparse Weights



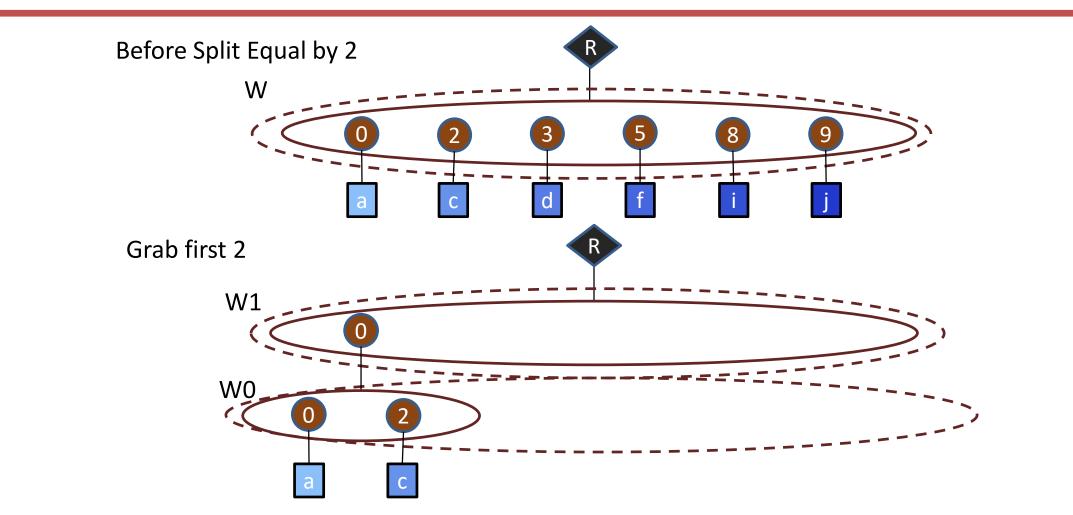
Weight Stationary - Sparse Weights

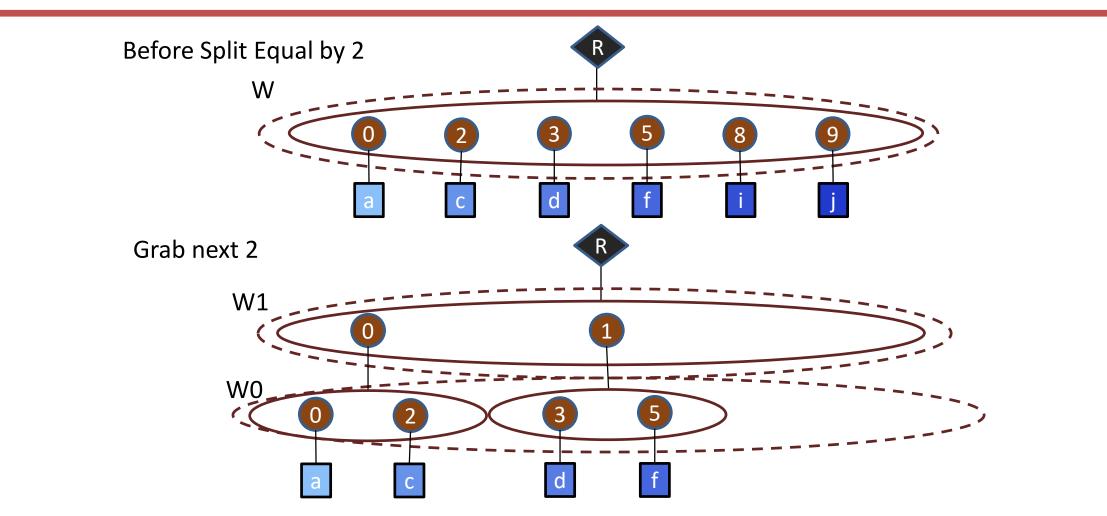


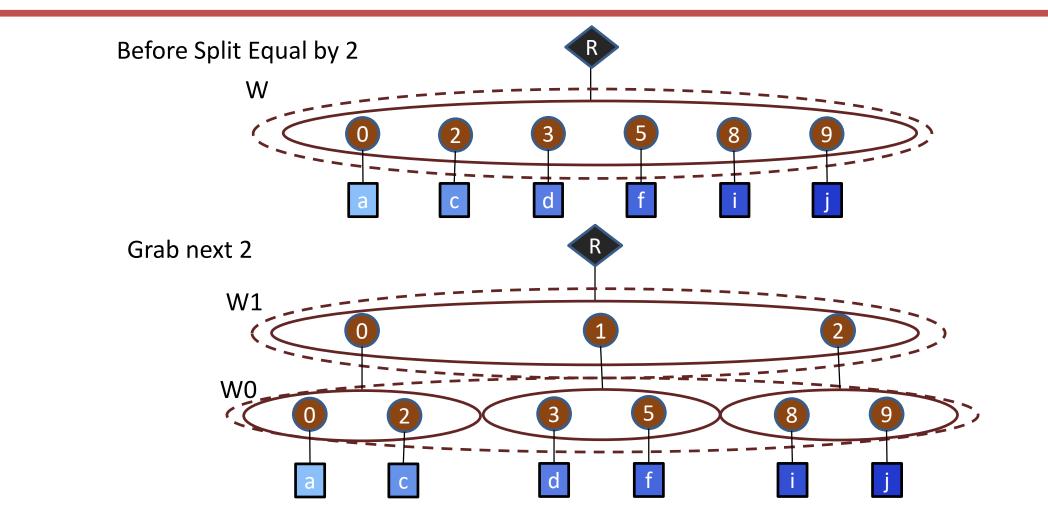
To Extend to Other Dimensions of DNN

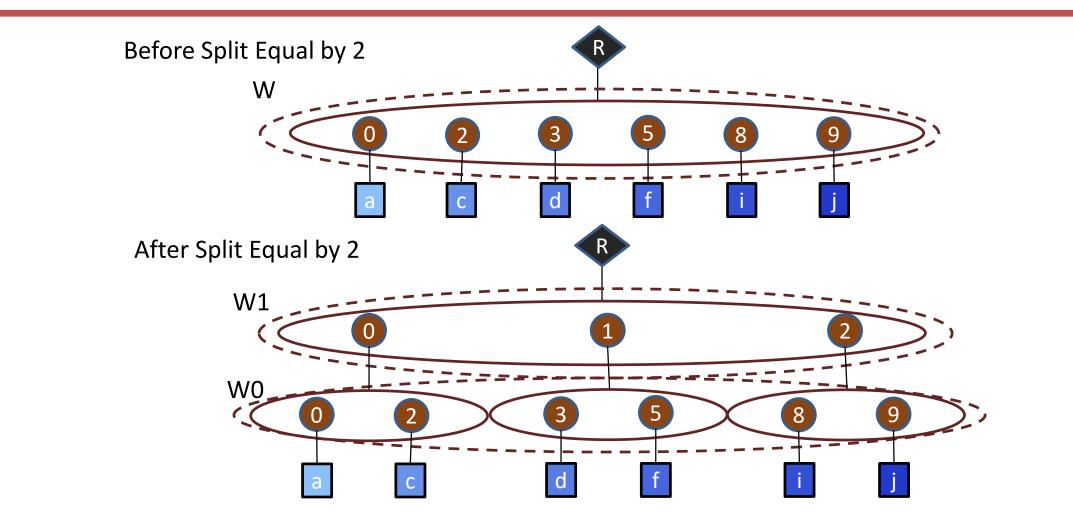
- Need to add loop nests for:
 - 2-D input activations and filters
 - Multiple input channels
 - Multiple output channels

• Add parallelism...

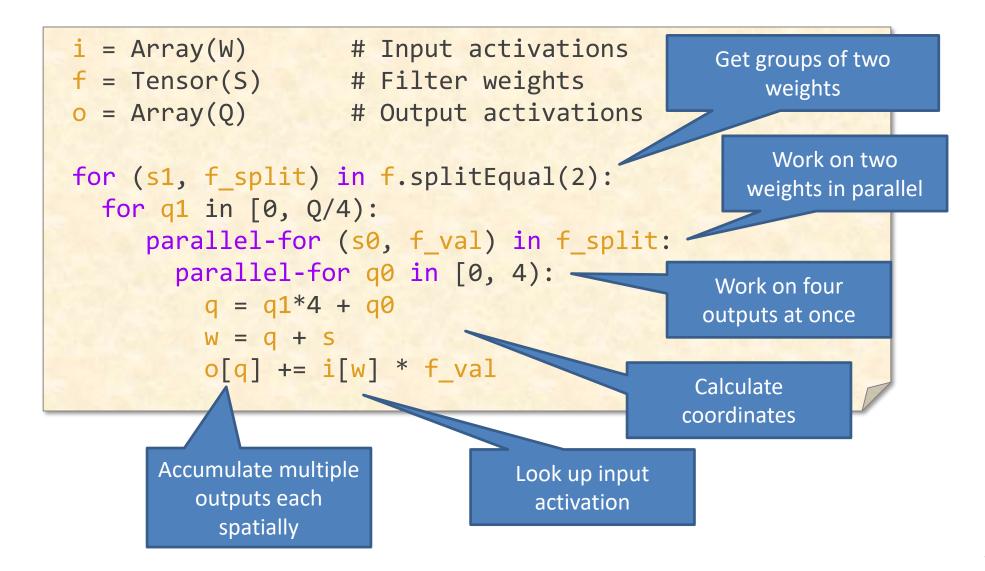




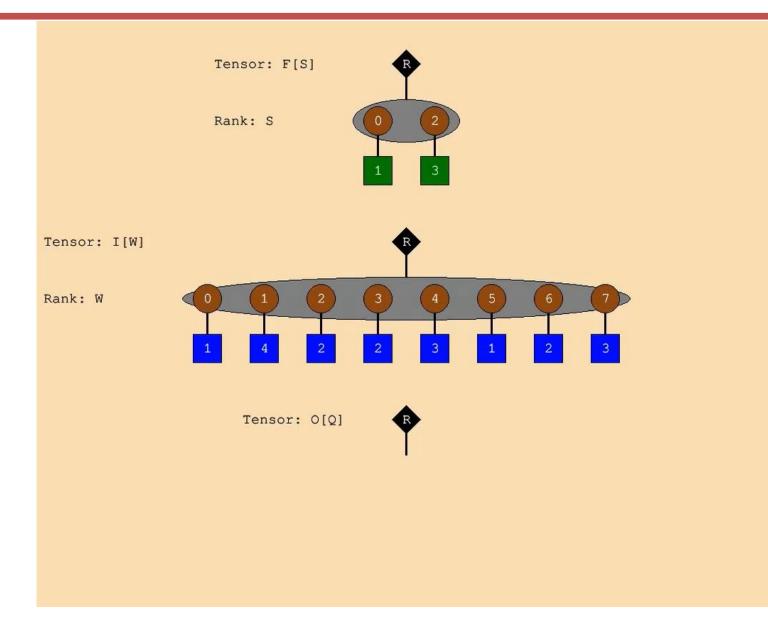




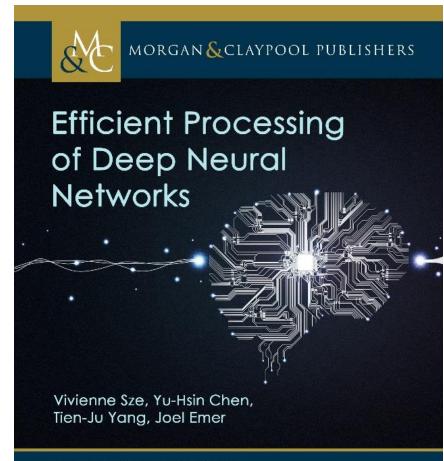
Parallel Weight Stationary - Sparse Weights



Parallel Weight Stationary - Sparse Weights



Book on Efficient Processing of DNNs



Synthesis Lectures on Computer Architecture

Natalie Enright Jerger & Margaret Martonosi, Series Editors

Part I Understanding Deep Neural Networks Introduction Overview of Deep Neural Networks

Part II Design of Hardware for Processing DNNs Key Metrics and Design Objectives Kernel Computation Designing DNN Accelerators Operation Mapping on Specialized Hardware

Part III Co-Design of DNN Hardware and Algorithms Reducing Precision Exploiting Sparsity Designing Efficient DNN Models Advanced Technologies

https://tinyurl.com/EfficientDNNBook

