
1

Accelergy

ISCA Tutorial

Hands-on session

May 2020

Timeloop

Angshuman Parashar NVIDIA

Yannan Nellie Wu MIT

Po-An Tsai NVIDIA

Vivienne Sze MIT

Joel S. Emer NVIDIA, MIT

2

Introduction to Accelergy

3

Domain-Specific Accelerators Improve Energy Efficiency

Data and computation-intensive applications are power hungry

Object
Detection

Deep Neural
Network

Accelerator

We must quickly evaluate energy efficiency of arbitrary
potential designs in the large design space

Database
Processing

Database
Accelerator

4

From Architecture Blueprints to Physical Systems

Fabricated
System

Architecture
Stage

[Chen, ISSCC 2016]

RTL
Model

Physical
Layout

Global
Buffer
(GLB)

PE*0

PE2 PE3

*processing element

buffer

5

Architecture-Level Energy Estimation and Design Exploration

Architecture
Stage

Fabricated
System

RTL
Model

Physical
Layout

Fast design space exploration
• Short simulations on architecture-level components
• Short turn-around time for each potential design

Energy

Architecture-Level
Energy Estimator

Accelergy

Global
Buffer
(GLB)

PE*0

PE2 PE3

*processing element

buffer

6

Existing Architecture-Level Energy Estimators

• Architecture-level energy modeling for general purpose processors

– Wattch[Brooks, ISCA2000], McPAT[Li, MICRO2009], GPUWattch[Leng, ISCA2013],

PowerTrain[Lee, ISLPED2015]

ALU

L1 $

ROB

…
L2 $

CPU/GPU-Centric
Architecture Model

Use a fixed architecture template
to represent the architecture

7

Existing Architecture-Level Energy Estimators

• Architecture-level energy modeling for general purpose processors

– Wattch[Brooks, ISCA2000], McPAT[Li, MICRO2009], GPUWattch[Leng, ISCA2013],

PowerTrain[Lee, ISLPED2015]

ALU

L1 $

ROB

…
L2 $

CPU/GPU-Centric
Architecture Model

The fixed template is not sufficient to describe various
optimizations in the diverse accelerator design space

Global
Buffer
(GLB)

PE*0

PE2 PE3

*processing element

buffer

8

Accelergy Overview

• Accelergy Infrastructure

–Performs architecture-level estimations to enable rapid

design space exploration

– Supports modeling of diverse architectures with various

underlying technologies

– Improves estimation accuracy by allowing fine-grained

classification of components’ runtime behaviors

– Supports succinct modeling of complicated architectures

9

Accelergy High-Level Infrastructure

Accelergy

ERT/ART
Generator

Primitive
Component

Library

Energy
Calculator

…
CACTI

Estimation
Plug-in

45nm
Estimation

Plug-in

Estimation Plug-ins Available at http://accelergy.mit.edu/

Architecture
Description

Compound
Component
Description

Energy Reference
Table (ERT)

Area Reference
Table (ART)

Action
Counts

Energy
Estimations

http://accelergy.mit.edu/

10

How to use Accelergy?

1. Estimate architectures with primitive components
2. Estimate architectures with compound components
3. Modeling with various underlying technologies

11

Accelergy Modeling of a Simple Design

• A simple architecture can be modeled with primitive components

– Step 01: Energy reference table generation

12

Accelergy Modeling of a Simple Design

• A simple architecture can be modeled with primitive components

– Step 01: Energy reference table generation

YAML

YAML

YAML

13

Accelergy Modeling of a Simple Design

• Primitive Component Library

– Describes the following properties of the

primitive component classes

• Hardware attributes

version: 0.3
classes:

- name: bitwise
attributes:

technology: 65nm
datawidth: 16

actions:
- name: process
- name: idle

- name: intadder
attributes:

technology: 65nm
datawidth: 16
num_pipeline_stages: 1

actions:
- name: add
- name: idle

…

User-defined
attributes names

Default
attribute values

14

Accelergy Modeling of a Simple Design

• Primitive Component Library

– Describes the following properties of the

primitive component classes

• Hardware attributes

• Associated actions

version: 0.3
classes:

- name: bitwise
attributes:

technology: 65nm
datawidth: 16

actions:
- name: process
- name: idle

- name: intadder
attributes:

technology: 65nm
datawidth: 16
num_pipeline_stages: 1

actions:
- name: add
- name: idle

…

User-defined
attributes names

User-defined
action names

Default
attribute values

15

Accelergy Modeling of a Simple Design

• Primitive Component Library

– Describes the following properties of the

primitive component classes

• Hardware attributes

• Associated actions

– Accelergy comes with a set of primitive

component classes by default

– Users can add their own primitive component

classes via the accelergy_config file

• Default accelergy_config file generated at:

~/.config/accelergy/accelergy_config.yaml

(more details about the config file in the estimation plug-in section)

version: 0.3
classes:

- name: bitwise
attributes:

technology: 65nm
datawidth: 16

actions:
- name: process
- name: idle

- name: intadder
attributes:

technology: 65nm
datawidth: 16
num_pipeline_stages: 1

actions:
- name: add
- name: idle

…

User-defined
attributes names

User-defined
action names

Default
attribute values

16

Actions with arguments

1.8
1.0

4.7

2.1 2.4

~5x

Action
Name

Argument

data_
delta

address_
delta

Repeated
read

read

0 0

Random
read

1 1

Repeated
write

write

0 0

Random
write

1 1

Repeated
data write

0 1

How much does
data wires switch?

0: idle, 1: active

How much does
address wires switch?

0: idle, 1: active

17

Actions with arguments

…
- name: regfile

attributes:
technology: 45nm
width: 16
depth: 1
n_ports: 2

actions:
- name: read

arguments:
data_delta: 0..1
address_delta: 0..1

- name: write
arguments:

data_delta: 0..1
address_delta: 0..1

- name: idle

1.8
1.0

4.7

2.1 2.4

Action
Name

Argument

data_
delta

address_
delta

Repeated
read

read

0 0

Random
read

1 1

Repeated
write

write

0 0

Random
write

1 1

Repeated
data write

0 1

How much does
data wires switch?

0: idle, 1: active

How much does
address wires switch?

0: idle, 1: active

~5x

18

Accelergy Modeling of a Simple Design
Architecture Description

19

Accelergy Modeling of a Simple Design

• Architecture Description

– Describes the following properties of

the components in the architecture

• Hierarchical relationships

• Component classes

• Hardware attributes

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

20

Architecture Description with Primitive Components

• Hierarchical represented using a tree structure architecture:
version: 0.3

subtree:
- name: design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64
depth: 1024

subtree:
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PE

Architecture Tree

design

21

Architecture Description with Primitive Components

• Hierarchical represented using a tree structure architecture:
version: 0.3

subtree:
- name: design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64
depth: 1024

subtree:
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PEGLB

MAC Buffer

Architecture Tree

design

22

Architecture Description with Primitive Components

• Specification of component classes architecture:
version: 0.3

subtree:
- name: design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64
depth: 1024

subtree:
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PEGLB

MAC Buffer

Architecture Tree

design

SRAM

SRAMMAC

23

Architecture Description with Primitive Components

• Hardware attributes defined for each component architecture:
version: 0.3

subtree:
- name: design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64
depth: 1024

subtree:
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PE
GLB

MAC Buffer

Architecture Tree

SRAM

SRAMMAC

width: 64
depth:1024

tech: 45nm

width: 16 width: 64
depth:1024

design

Global Attributes

24

Architecture Description with Primitive Components
Architecture Description

Top key used to
represent the file
type

25

Accelergy Modeling of a Simple Design

• Energy Reference Table

– List component in a flattened

fashion with component names

that reflect hierarchy

ERT:
version: 0.3
tables:
- name: design.PE.MAC

actions:
- name: mac_random

arguments: null
energy: 2.2

- name: mac_reused
…

- name: design.PE.buffer
actions:
- name: read

arguments:
address_delta: 0
data_delta: 0

energy: 0.006
- name: read

arguments:
address_delta: 0
data_delta: 1

energy: 0.144
…

26

Accelergy Modeling of a Simple Design

• Energy Reference Table

– List component in a flattened

fashion with component names

that reflect hierarchy

– Describes the energy/action

values (pJ) of the actions

associated with each

component

ERT:
version: 0.3
tables:
- name: design.PE.MAC

actions:
- name: mac_random

arguments: null
energy: 2.2

- name: mac_reused
…

- name: design.PE.buffer
actions:
- name: read

arguments:
address_delta: 0
data_delta: 0

energy: 0.006
- name: read

arguments:
address_delta: 0
data_delta: 1

energy: 0.144
…

If an action has arguments, all
of the possible combination of
argument values are listed

27

Exercise 01: Simple Architecture ERT/ART Generation
Architecture Description

Top key used to
represent the file
type

28

Accelergy Modeling of a Simple Design

• A simple architecture can be modeled with primitive components

– Step 01: Energy reference table generation

– Step 02: Energy calculation with action counts

29

Accelergy Modeling of a Simple Design

• Action counts

– List the components in a

hierarchical/flattened

fashion

– For each component,

describes the number of

times each action has

occurred during the run of

a specific workload

action_counts:
version: 0.3
subtree:

- name: design
local:

- name: GLB
action_counts:

- name: read
arguments:

data_delta: 1
address_delta: 1

counts: 20
- name: write

arguments: …
counts: …

subtree:
- name: PE

local:
- name: buffer

action_counts: …
- name: MAC

action_counts: …

Action and
argument names
must match with
those defined in
the ERT

30

Exercise 02: Simple Architecture Energy Calculation

• Energy calculation with existing Energy Reference Table

Allows us to quickly iterate through
multiple runtime simulation results of various workloads

Top key used to represent the file type

31

How to use Accelergy?

1. Estimate architectures with primitive components
2. Estimate architectures with compound components
3. Modeling with various underlying technologies

32

Accelergy Modeling of Complicated Architectures

• Accelergy is able to succinctly model arbitrary complicated architectures

with architecture description of user-defined compound component classes
Accelergy

ERT/ART
Generator

Primitive
Component

Library

Energy
Calculator

Estimation
Plug-ins

component action counts

GLB read() 10

PE0.buffer read() 800

PE0.MAC compute() 370

PE1.buffer read() 830

…

Action CountsERT
ART

Energy
Estimations

33

Accelergy Modeling of Complicated Architectures

• Accelergy is able to succinctly model arbitrary complicated architectures

with architecture description of user-defined compound component classes
Accelergy

ERT/ART
Generator

Primitive
Component

Library

Energy
Calculator

Estimation
Plug-ins

component action counts

GLB read() 10

PE0.buffer read() 800

PE0.MAC compute() 370

PE1.buffer read() 830

…

Action CountsERT
ART

Energy
Estimations

YAML

YAML

YAML
YAML

34

Accelergy Modeling of Complicated Architectures

• Architecture Description with

user-defined compound

component classes

architecture:
version: 0.3

subtree:
- name: design

attributes:
technology: 45nm

local:
- name: GLB

class: smartbuffer
attributes:

width: 64
depth: 1024

subtree:
- name: PE

local:
- name: buffer

class: smartbuffer
attributes: …

- name: MAC
class: MAC_fifo
attributes: …

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

smart
buffer

smartbuffer

MAC_fifo

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

35

Accelergy Modeling of Complicated Architectures

• Compound component description

– Define compound component hardware implementation

• 2-level tree representation of hardware implementations

• Define hardware attributes for compound component class

– Define compound actions associated with the compound

component class

• 2-level tree representation of action definition

36

Compound Component Description

• 2-level tree representation of

hardware implementations

smartbuffer

Compound Component
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes:

technology: technology
width: width
depth: depth

…

buffer
SRAM

AG[0..1]
adder

Compound
Component Class

37

Compound Component Description

• Define hardware attributes for

compound component class

Smartbuffer
tech: 45nm
width: 64

depth:1024

buffer
SRAM

AG[0..1]
adder

Compound Component
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes:

technology: technology
width: width
depth: depth

…
Compound

Component Class

38

Compound Component Description

• Define hardware attributes for

compound component class

Smartbuffer
tech: 45nm
width: 64

depth:1024

buffer
tech: tech

width: width
depth: depth

SRAM

AG[0..1]
tech: tech

datawidth: log2(depth)

adder

Compound Component
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes:

technology: technology
width: width
depth: depth

…
Compound

Component Class

39

Compound Component Description

• Define hardware attributes for

compound component class

Smartbuffer
tech: 45nm
width: 64

depth:1024

buffer
tech: tech

width: width
depth: depth

SRAM

AG[0..1]
tech: tech

datawidth: log2(depth)

adder

Compound Component
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes:

technology: technology
width: width
depth: depth

…

attribute
mapping

arithmetic
computation

Compound
Component Class

40

Accelergy Modeling of Complicated Architectures

• Compound component description

– Define compound component hardware implementation

• 2-level tree representation of hardware implementations

• Define hardware attributes for compound component class

– Define compound actions associated with the compound

component class

• 2-level tree representation of action definition

41

Compound Component Description

• 2-level tree representation of action definition

AG = address generator

smartbuffer.read()

AG[0].add() buffer.read()

Compound Component
Action Definition Tree

Compound
Component Class

42

Compound Component Description

• 2-level tree representation of action definition

AG = address generator

smartbuffer.read()

AG[0].add() buffer.read()

name: smartbuffer
attributes: …
subcomponents: …
actions:

- name: read
arguments:

data_delta: 0..1
address_delta: 0..1

subcomponents:
- name: AG[0]

actions:
- name: add

- name: buffer
actions:

- name: read
arguments:

data_delta: data_delta
address_delta: address_delta

- name: write
…

argument
mapping

Compound Component
Action Definition Tree

Compound
Component Class

43

Exercise 03: Architecture with Compound Components

44

Exercise 04: Example Eyeriss-like Architecture

• High-level Architecture

weights_spad

ifmap_spad

psum_spad

MAC

Ifmap = input feature map
Psum = partial sum
PE = processing element
*_spad = *_scratchpad

WeightsNoC

IfmapNoC

PsumWrNoC

Eyeriss Architecture

GLBs

Weights
GLB

Shared GLB

PE array 12x14

PE PE … PE

PE PE PE

PE PE PE

…

…
………

PsumRdNoC

45

How to use Accelergy?

1. Estimate architectures with primitive components
2. Estimate architectures with compound components
3. Modeling with various underlying technologies

46

Energy Estimation Plug-ins for Various Technologies

• Accelergy automatically locates all the plug-ins according to its

config file

version: 0.3
estimator_plug_ins:

- /usr/local/share/accelergy/estimation_plug_ins
primitive_components:

- /usr/local/share/accelergy/primitive_component_libs

Accelergy Config File

~/.config/accelergy/accelergy_config.yaml

Automatically created by the first run of Accelergy

47

Energy Estimation Plug-ins for Various Technologies

• Interaction interface between Accelergy and estimation plug-ins

– Step 1: collect accuracy from estimation plug-ins (quick check)

– Step 2: pick the most accurate plug-in for estimations (potentially time-

consuming estimation)

Accelergy

Energy Estimation
Plug-in

• primitive component class,
e.g., SRAM, MAC, etc.

• hardware attributes,
e.g., tech, width, etc.

• Actions
e.g., read, write, etc.

Accelergy
Quick Check Request

• Estimation Accuracy

Plug-in
Estimation Response

*accuracy is 0 if component not supported

48

Energy Estimation Plug-ins for Various Technologies

• Interaction interface between Accelergy and estimation plug-ins

– Step 1: collect accuracy from estimation plug-ins (quick check)

– Step 2: pick the most accurate plug-in for estimations (potentially time-

consuming estimation)

Accelergy

Most Accurate
Energy Estimation

Plug-in

• primitive component class,
e.g., SRAM, MAC, etc.

• hardware attributes,
e.g., tech, width, etc.

• Actions
e.g., read, write, etc.

Accelergy
Estimation Request

• Energy/Action Estimation

Plug-in
Estimation Response

49

Energy Estimation Plug-ins for Various Technologies

• What if none of the open sourced plug-in supports my components?

– Accelergy provides a table-based-plug-in for easy plug-and-chug of user

defined csv tables

Accelergy

Accelergy Table
Based Plug-in

Interface already
setup between
Accelergy and
table-based plug-in

50

Energy Estimation Plug-ins for Various Technologies

• What if none of the open sourced plug-in supports my components?

– Accelergy provides a table-based-plug-in for easy plug-and-chug of user

defined csv tables

Accelergy

Accelergy Table
Based Plug-in

Interface already
setup between
Accelergy and
table-based plug-in

The table-based plug-in searches the set
of tables and determines if the request

from Accelergy is supported

Default set of
CSV tables

name: default_tables
technology: 45nm
accuracy: 0
path_to_data_dir: ./data

identifier.table.yaml

51

Energy Estimation Plug-ins for Various Technologies

• What if none of the open sourced plug-in supports my components?

– Accelergy provides a table-based-plug-in for easy plug-and-chug of user

defined csv tables

Accelergy

Accelergy Table
Based Plug-in

Interface already
setup between
Accelergy and
table-based plug-in

Default set of
CSV tables

Users can add their set of csv tables to provide user-
defined data, e.g., PIM related estimation data

memristor.csv

The table-based plug-in searches the set
of tables and determines if the request

from Accelergy is supported

52

Energy Estimation Plug-ins for Various Technologies

• Specifies the roots of the user-defined tables in the Accelergy config file

Accelergy

Accelergy Table
Based Plug-in

Default
set of CSV tables

PIM-related
set of CSV tables

FPGA-related
set of CSV tables

version: 0.3
estimator_plug_ins:

- /usr/local/share/accelergy/estimation_plug_ins
primitive_components:

- /usr/local/share/accelergy/primitive_component_libs
table_plug_ins:

roots:
- …/accelergy-table-based-plug-ins/set_of_table_templates
- <path-to-pim-related-csv->
- <path-to-FPGA-related-csv-root>

Accelergy Config File

~/.config/accelergy/accelergy_config.yaml

Command to add a root:
accelergyTables –r <path-to-pim-related-csv-folder>

53

Exercise 05: Modeling of a Processing in memory based Architecture

• High-level PIM architecture

54

Other Exercise/Baselines

• exercises/timeloop+accelergy

– mapping exploration with an integer based eyeriss-like architecture

– mapping exploration with an floating point based eyeriss-like architecture

• baseline_designs/

– Various popular baseline architectures

– Example workload specifications

