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Introduction to Accelergy
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Domain-Specific Accelerators Improve Energy Efficiency

Data and computation-intensive applications are power hungry

Object 
Detection

Deep Neural 
Network 

Accelerator

We must quickly evaluate energy efficiency of arbitrary 
potential designs in the large design space

Database 
Processing  

Database
Accelerator
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From Architecture Blueprints to Physical Systems

Fabricated 
System

Architecture
Stage

[Chen, ISSCC 2016] 

RTL 
Model

Physical 
Layout

Global 
Buffer
(GLB)

PE*0

PE2 PE3

*processing element

buffer
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Architecture-Level Energy Estimation and Design Exploration

Architecture
Stage

Fabricated 
System

RTL 
Model

Physical 
Layout

Fast design space exploration
• Short simulations on architecture-level components
• Short turn-around time for each potential design

Energy

Architecture-Level 
Energy Estimator

Accelergy

Global 
Buffer
(GLB)

PE*0

PE2 PE3

*processing element

buffer
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Existing Architecture-Level Energy Estimators

• Architecture-level energy modeling for general purpose processors

– Wattch[Brooks, ISCA2000], McPAT[Li, MICRO2009], GPUWattch[Leng, ISCA2013], 

PowerTrain[Lee, ISLPED2015]

ALU

L1 $

ROB

…
L2 $

CPU/GPU-Centric 
Architecture Model

Use a fixed architecture template
to represent the architecture
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Existing Architecture-Level Energy Estimators

• Architecture-level energy modeling for general purpose processors

– Wattch[Brooks, ISCA2000], McPAT[Li, MICRO2009], GPUWattch[Leng, ISCA2013], 

PowerTrain[Lee, ISLPED2015]

ALU

L1 $

ROB

…
L2 $

CPU/GPU-Centric 
Architecture Model

The fixed template is not sufficient to describe various 
optimizations in the diverse accelerator design space

Global 
Buffer
(GLB)

PE*0

PE2 PE3

*processing element

buffer
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Accelergy Overview

• Accelergy Infrastructure

–Performs architecture-level estimations to enable rapid 

design space exploration

– Supports modeling of diverse architectures with various 

underlying technologies

– Improves estimation accuracy by allowing fine-grained 

classification of  components’ runtime behaviors

– Supports succinct modeling of complicated architectures
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Accelergy High-Level Infrastructure

Accelergy

ERT/ART 
Generator

Primitive 
Component 

Library

Energy 
Calculator

…
CACTI

Estimation 
Plug-in

45nm
Estimation

Plug-in

Estimation Plug-ins Available at http://accelergy.mit.edu/

Architecture 
Description

Compound 
Component 
Description

Energy Reference 
Table (ERT)

Area Reference 
Table (ART)

Action 
Counts

Energy 
Estimations

http://accelergy.mit.edu/
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How to use Accelergy?

1. Estimate architectures with primitive components
2. Estimate architectures with compound components
3. Modeling with various underlying technologies
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Accelergy Modeling of a Simple Design

• A simple architecture can be modeled with primitive components

– Step 01: Energy reference table generation
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Accelergy Modeling of a Simple Design

• A simple architecture can be modeled with primitive components

– Step 01: Energy reference table generation

YAML

YAML

YAML
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Accelergy Modeling of a Simple Design

• Primitive Component Library

– Describes the following properties of the 

primitive component classes

• Hardware attributes

version: 0.3
classes:

- name: bitwise
attributes:

technology: 65nm
datawidth: 16

actions:
- name: process
- name: idle

- name: intadder
attributes:

technology: 65nm
datawidth: 16
num_pipeline_stages: 1

actions:
- name: add
- name: idle

…

User-defined 
attributes names

Default 
attribute values
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Accelergy Modeling of a Simple Design

• Primitive Component Library

– Describes the following properties of the 

primitive component classes

• Hardware attributes

• Associated actions

version: 0.3
classes:

- name: bitwise
attributes:

technology: 65nm
datawidth: 16

actions:
- name: process
- name: idle

- name: intadder
attributes:

technology: 65nm
datawidth: 16
num_pipeline_stages: 1

actions:
- name: add
- name: idle

…

User-defined 
attributes names

User-defined 
action names

Default 
attribute values
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Accelergy Modeling of a Simple Design

• Primitive Component Library

– Describes the following properties of the 

primitive component classes

• Hardware attributes

• Associated actions

– Accelergy comes with a set of primitive 

component classes by default 

– Users can add their own primitive component 

classes via the accelergy_config file

• Default accelergy_config file generated at:  

~/.config/accelergy/accelergy_config.yaml

(more details about the config file in the estimation plug-in section)

version: 0.3
classes:

- name: bitwise
attributes:

technology: 65nm
datawidth: 16

actions:
- name: process
- name: idle

- name: intadder
attributes:

technology: 65nm
datawidth: 16
num_pipeline_stages: 1

actions:
- name: add
- name: idle

…

User-defined 
attributes names

User-defined 
action names

Default 
attribute values
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Actions with arguments

1.8
1.0

4.7

2.1 2.4

~5x

Action 
Name

Argument

data_
delta

address_
delta

Repeated
read

read

0 0

Random
read

1 1

Repeated
write

write

0 0

Random
write

1 1

Repeated 
data write

0 1

How much does 
data wires switch?

0: idle, 1: active

How much does 
address wires switch?

0: idle, 1: active
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Actions with arguments

…
- name: regfile

attributes:
technology: 45nm
width: 16
depth: 1
n_ports: 2

actions:
- name: read

arguments:
data_delta: 0..1
address_delta: 0..1

- name: write
arguments:

data_delta: 0..1
address_delta: 0..1

- name: idle

1.8
1.0

4.7

2.1 2.4

Action 
Name

Argument

data_
delta

address_
delta

Repeated
read

read

0 0

Random
read

1 1

Repeated
write

write

0 0

Random
write

1 1

Repeated 
data write

0 1

How much does 
data wires switch?

0: idle, 1: active

How much does 
address wires switch?

0: idle, 1: active

~5x
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Accelergy Modeling of a Simple Design
Architecture Description
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Accelergy Modeling of a Simple Design

• Architecture Description

– Describes the following properties of 

the components in the architecture

• Hierarchical relationships

• Component classes

• Hardware attributes

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design
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Architecture Description with Primitive Components

• Hierarchical represented using a tree structure architecture:
version: 0.3

subtree:
- name:  design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64             
depth: 1024

subtree: 
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: … 

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PE

Architecture Tree

design
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Architecture Description with Primitive Components

• Hierarchical represented using a tree structure architecture:
version: 0.3

subtree:
- name:  design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64             
depth: 1024

subtree: 
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …            

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PEGLB

MAC Buffer

Architecture Tree

design
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Architecture Description with Primitive Components

• Specification of component classes architecture:
version: 0.3

subtree:
- name:  design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64             
depth: 1024

subtree: 
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …            

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PEGLB

MAC Buffer

Architecture Tree

design

SRAM

SRAMMAC
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Architecture Description with Primitive Components

• Hardware attributes defined for each component architecture:
version: 0.3

subtree:
- name:  design

attributes:
technology: 45nm

local:
- name: GLB

class: SRAM
attributes:

width: 64             
depth: 1024

subtree: 
- name: PE

local:
- name: buffer

class: SRAM
attributes: …

- name: MAC
class: MAC
attributes: …            

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

SRAM

SRAM

MAC

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design

PE
GLB

MAC Buffer

Architecture Tree

SRAM

SRAMMAC

width: 64
depth:1024

tech: 45nm

width: 16 width: 64
depth:1024

design

Global Attributes



24

Architecture Description with Primitive Components
Architecture Description

Top key used to 
represent the file 
type
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Accelergy Modeling of a Simple Design

• Energy Reference Table

– List component in a flattened 

fashion with component names 

that reflect hierarchy

ERT:
version: 0.3
tables:
- name: design.PE.MAC

actions:
- name: mac_random

arguments: null
energy: 2.2

- name: mac_reused
…

- name: design.PE.buffer
actions:
- name: read

arguments:
address_delta: 0
data_delta: 0

energy: 0.006
- name: read

arguments:
address_delta: 0
data_delta: 1

energy: 0.144
…
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Accelergy Modeling of a Simple Design

• Energy Reference Table

– List component in a flattened 

fashion with component names 

that reflect hierarchy

– Describes the energy/action 

values (pJ) of the actions 

associated with each 

component

ERT:
version: 0.3
tables:
- name: design.PE.MAC

actions:
- name: mac_random

arguments: null
energy: 2.2

- name: mac_reused
…

- name: design.PE.buffer
actions:
- name: read

arguments:
address_delta: 0
data_delta: 0

energy: 0.006
- name: read

arguments:
address_delta: 0
data_delta: 1

energy: 0.144
…

If an action has arguments, all 
of the possible combination of 
argument values are listed



27

Exercise  01: Simple Architecture ERT/ART Generation
Architecture Description

Top key used to 
represent the file 
type
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Accelergy Modeling of a Simple Design

• A simple architecture can be modeled with primitive components

– Step 01: Energy reference table generation

– Step 02: Energy calculation with action counts
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Accelergy Modeling of a Simple Design

• Action counts

– List the components in a 

hierarchical/flattened 

fashion

– For each component, 

describes the number of 

times each action has 

occurred during the run of 

a specific workload

action_counts:
version: 0.3
subtree:

- name: design
local:

- name: GLB         
action_counts:

- name: read
arguments:

data_delta: 1
address_delta: 1

counts: 20
- name: write

arguments: …
counts: …

subtree:
- name: PE

local:
- name: buffer

action_counts: …
- name: MAC

action_counts: …

Action and 
argument names 
must match with 
those defined in 
the ERT
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Exercise  02: Simple Architecture Energy Calculation

• Energy calculation with existing Energy Reference Table

Allows us to quickly iterate through 
multiple runtime simulation results of various workloads

Top key used to represent the file type
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How to use Accelergy?

1. Estimate architectures with primitive components
2. Estimate architectures with compound components
3. Modeling with various underlying technologies
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Accelergy Modeling of Complicated Architectures

• Accelergy is able to succinctly model arbitrary complicated architectures 

with architecture description of user-defined compound component classes
Accelergy

ERT/ART 
Generator

Primitive 
Component 

Library

Energy 
Calculator

Estimation 
Plug-ins

component action counts

GLB read() 10

PE0.buffer read() 800

PE0.MAC compute() 370

PE1.buffer read() 830

…

Action CountsERT
ART

Energy 
Estimations
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Accelergy Modeling of Complicated Architectures

• Accelergy is able to succinctly model arbitrary complicated architectures 

with architecture description of user-defined compound component classes
Accelergy

ERT/ART 
Generator

Primitive 
Component 

Library

Energy 
Calculator

Estimation 
Plug-ins

component action counts

GLB read() 10

PE0.buffer read() 800

PE0.MAC compute() 370

PE1.buffer read() 830

…

Action CountsERT
ART

Energy 
Estimations

YAML

YAML

YAML
YAML
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Accelergy Modeling of Complicated Architectures

• Architecture Description with 

user-defined compound 

component classes

architecture:
version: 0.3

subtree:
- name:  design

attributes:
technology: 45nm

local:
- name: GLB

class: smartbuffer
attributes:

width: 64             
depth: 1024

subtree: 
- name: PE

local:
- name: buffer

class: smartbuffer
attributes: …

- name: MAC
class: MAC_fifo
attributes: …            

GLB
tech: 45nm
width: 64

depth:1024

buffer

MAC

PE

smart
buffer

smartbuffer

MAC_fifo

tech: 45nm, width: 16
depth:256

tech: 45nm, width: 16

Architecture Description

design
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Accelergy Modeling of Complicated Architectures

• Compound component description

– Define compound component hardware implementation

• 2-level tree representation of hardware implementations

• Define hardware attributes for compound component class 

– Define compound actions associated with the compound 

component class

• 2-level tree representation of action definition
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Compound Component Description

• 2-level tree representation of 

hardware implementations

smartbuffer

Compound Component 
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes: 

technology: technology
width: width
depth: depth

…

buffer
SRAM

AG[0..1]
adder

Compound 
Component Class
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Compound Component Description

• Define hardware attributes for 

compound component class 

Smartbuffer
tech: 45nm
width: 64

depth:1024

buffer
SRAM

AG[0..1]
adder

Compound Component 
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes: 

technology: technology
width: width
depth: depth

…
Compound 

Component Class
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Compound Component Description

• Define hardware attributes for 

compound component class 

Smartbuffer
tech: 45nm
width: 64

depth:1024

buffer
tech: tech

width: width
depth: depth

SRAM

AG[0..1]
tech: tech

datawidth: log2(depth)

adder

Compound Component 
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes: 

technology: technology
width: width
depth: depth

…
Compound 

Component Class
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Compound Component Description

• Define hardware attributes for 

compound component class 

Smartbuffer
tech: 45nm
width: 64

depth:1024

buffer
tech: tech

width: width
depth: depth

SRAM

AG[0..1]
tech: tech

datawidth: log2(depth)

adder

Compound Component 
Hardware Structure Tree

AG = address generator

name: smartbuffer
attributes:

technology: 45nm
width: 64
depth: 1024

subcomponents:
- name: AGs[0..1]

class: adder
attributes:

technology: technology
width: log(depth)

- name: buffer
class: SRAM
attributes: 

technology: technology
width: width
depth: depth

…

attribute 
mapping

arithmetic 
computation

Compound 
Component Class
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Accelergy Modeling of Complicated Architectures

• Compound component description

– Define compound component hardware implementation

• 2-level tree representation of hardware implementations

• Define hardware attributes for compound component class 

– Define compound actions associated with the compound 

component class

• 2-level tree representation of action definition
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Compound Component Description

• 2-level tree representation of action definition

AG = address generator

smartbuffer.read()

AG[0].add() buffer.read() 

Compound Component 
Action Definition Tree

Compound 
Component Class
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Compound Component Description

• 2-level tree representation of action definition

AG = address generator

smartbuffer.read()

AG[0].add() buffer.read() 

name: smartbuffer
attributes: …
subcomponents: …
actions:

- name: read
arguments:

data_delta: 0..1
address_delta: 0..1

subcomponents:
- name: AG[0]

actions:
- name: add

- name: buffer
actions:

- name: read
arguments:

data_delta: data_delta
address_delta: address_delta

- name: write
…

argument 
mapping

Compound Component 
Action Definition Tree

Compound 
Component Class
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Exercise  03: Architecture with Compound Components
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Exercise  04: Example Eyeriss-like Architecture

• High-level Architecture

weights_spad

ifmap_spad

psum_spad

MAC

Ifmap = input feature map
Psum = partial sum
PE       = processing element
*_spad = *_scratchpad

WeightsNoC

IfmapNoC

PsumWrNoC

Eyeriss Architecture

GLBs

Weights 
GLB

Shared GLB

PE array 12x14

PE PE … PE

PE PE PE

PE PE PE

…

…
………

PsumRdNoC
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How to use Accelergy?

1. Estimate architectures with primitive components
2. Estimate architectures with compound components
3. Modeling with various underlying technologies
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Energy Estimation Plug-ins for Various Technologies

• Accelergy automatically locates all the plug-ins according to its 

config file

version: 0.3
estimator_plug_ins:

- /usr/local/share/accelergy/estimation_plug_ins
primitive_components:

- /usr/local/share/accelergy/primitive_component_libs

Accelergy Config File

~/.config/accelergy/accelergy_config.yaml

Automatically created by the first run of Accelergy
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Energy Estimation Plug-ins for Various Technologies

• Interaction interface between Accelergy and estimation plug-ins

– Step 1: collect accuracy from estimation plug-ins (quick check)

– Step 2: pick the most accurate plug-in for estimations (potentially time-

consuming estimation)

Accelergy

Energy Estimation 
Plug-in

• primitive component class, 
e.g., SRAM, MAC, etc.

• hardware attributes, 
e.g., tech, width, etc.

• Actions
e.g., read, write, etc.

Accelergy 
Quick Check Request

• Estimation Accuracy

Plug-in
Estimation Response

*accuracy is 0 if component not supported
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Energy Estimation Plug-ins for Various Technologies

• Interaction interface between Accelergy and estimation plug-ins

– Step 1: collect accuracy from estimation plug-ins (quick check)

– Step 2: pick the most accurate plug-in for estimations (potentially time-

consuming estimation)

Accelergy

Most Accurate
Energy Estimation 

Plug-in

• primitive component class, 
e.g., SRAM, MAC, etc.

• hardware attributes, 
e.g., tech, width, etc.

• Actions
e.g., read, write, etc.

Accelergy 
Estimation Request

• Energy/Action Estimation

Plug-in
Estimation Response



49

Energy Estimation Plug-ins for Various Technologies

• What if none of the open sourced plug-in supports my components?

– Accelergy provides a table-based-plug-in for easy plug-and-chug of user 

defined csv tables

Accelergy

Accelergy Table 
Based Plug-in

Interface already 
setup between 
Accelergy and 
table-based plug-in
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Energy Estimation Plug-ins for Various Technologies

• What if none of the open sourced plug-in supports my components?

– Accelergy provides a table-based-plug-in for easy plug-and-chug of user 

defined csv tables

Accelergy

Accelergy Table 
Based Plug-in

Interface already 
setup between 
Accelergy and 
table-based plug-in

The table-based plug-in searches the set 
of tables and determines if the request 

from Accelergy is supported

Default set of 
CSV tables

name: default_tables
technology: 45nm
accuracy: 0
path_to_data_dir: ./data

identifier.table.yaml
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Energy Estimation Plug-ins for Various Technologies

• What if none of the open sourced plug-in supports my components?

– Accelergy provides a table-based-plug-in for easy plug-and-chug of user 

defined csv tables

Accelergy

Accelergy Table 
Based Plug-in

Interface already 
setup between 
Accelergy and 
table-based plug-in

Default set of 
CSV tables

Users can add their set of csv tables to provide user-
defined data, e.g., PIM related estimation data

memristor.csv

The table-based plug-in searches the set 
of tables and determines if the request 

from Accelergy is supported
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Energy Estimation Plug-ins for Various Technologies

• Specifies the roots of the user-defined tables in the Accelergy config file

Accelergy

Accelergy Table 
Based Plug-in

Default 
set of CSV tables

PIM-related 
set of CSV tables

FPGA-related 
set of CSV tables

version: 0.3
estimator_plug_ins:

- /usr/local/share/accelergy/estimation_plug_ins
primitive_components:

- /usr/local/share/accelergy/primitive_component_libs
table_plug_ins:

roots:
- …/accelergy-table-based-plug-ins/set_of_table_templates
- <path-to-pim-related-csv->
- <path-to-FPGA-related-csv-root>

Accelergy Config File

~/.config/accelergy/accelergy_config.yaml

Command to add a root: 
accelergyTables –r <path-to-pim-related-csv-folder>



53

Exercise 05: Modeling of a Processing in memory based Architecture

• High-level PIM architecture 
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Other Exercise/Baselines

• exercises/timeloop+accelergy

– mapping exploration with an integer based eyeriss-like architecture

– mapping exploration with an floating point based eyeriss-like architecture

• baseline_designs/

– Various popular baseline architectures

– Example workload specifications


