
1

Accelergy

ISCA Tutorial
Hands-on session

May 2020

Timeloop

Angshuman Parashar NVIDIA

Yannan Nellie Wu MIT

Po-An Tsai NVIDIA

Vivienne Sze MIT

Joel S. Emer NVIDIA, MIT

2

Resources

• Tutorial Website: http://accelergy.mit.edu/isca20_tutorial.html

• Tutorial Docker: https://github.com/Accelergy-Project/timeloop-accelergy-tutorial

– Various exercises and example designs and environment setup for the tools

http://accelergy.mit.edu/isca20_tutorial.html
https://github.com/Accelergy-Project/timeloop-accelergy-tutorial

3

MOTIVATION

4

EXPLOITING REUSE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

2D hardware array7-dimensional network layer

Convolutional Reuse
• Slide filter over input plane
Input Activation Reuse
• Multiple filter blocks over same inputs
Output Activation Reuse
• Accumulation sum over channels
Batch Reuse
• Re-apply filters to new inputs

DRAM Buf RF *Temporal

Multicast Forwarding

Algorithmic

Reuse

map

Hardware

Reuse

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

Flexible architectures may allow millions of alternative mappings of a single workload

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

5

MAPPING CHOICES

480,000 mappings shown

Spread: 19x in energy efficiency

Only 1 is optimal, 9 others within 1%

Energy-efficiency of peak-perf mappings of a single problem

A mapper needs a good cost model to find
an optimal mapping

A model needs a mapper to evaluate a
DNN workload on an architecture

6,582 mappings have min. DRAM accesses
but vary 11x in energy efficiency

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

6

TIMELOOP / ACCELERGY
Tools for Evaluation and Architectural Design-Space Exploration of DNN Accelerators

Model variety of DNN acceleratorsTarget every architecture supported by Model

ACCELERGY

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

7

WHY TIMELOOP/ACCELERGY?

Microarchitectural model (Timeloop/Accelergy)

• Expressive: generic, template based hardware model

• Fast: faster than native execution on host CPUs

• Accurate: validated vs. design-specific models

Technology model (Accelergy)

• Allows user-defined complex architectural components

• Plugins for various technology models, e.g., Cacti, Aladdin, proprietary databases

Built-in Mapper (Timeloop)

• Addresses the hard problem of optimizing data reuse, which is required for faithful

evaluation of a workload on an architecture

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

8

FUN WITH TIMELOOP

THE MODEL

9

INVOKING THE MODELProblem

Architecture

Mapping

ACCELERGY

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

10

EXERCISE 0: PROBLEM

for r = [0:R):
for p = [0:P):
Output[p] += Weight[r] * Input[p+r];

Conv1D

P

Weights

Inputs

Outputs

R

W=P+R-1

Think about:To represent this… And write:

problem:
shape:
name: Conv1D
dimensions: [R, P]
data-spaces:
- name: Weights
projection:
- [[R]]

- name: Inputs
projection:
- [[P], [R]]

- name: Outputs
projection:
- [[P]]
read-write: True

instance:
R: 3
P: 16

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces
P
ro

je
c
ti

o
n

Outputs

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

11

EXERCISE 0: ARCHITECTURE
1-Level Temporal

Buffer

X

PE

To represent this… Write:

architecture:
subtree:

- name: PE
local:
- name: Buffer

class: SRAM
attributes:

entries: 64
instances: 1
word-bits: 8

- name: MACC
class: intmac
attributes:

word-bits: 8

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

12

EXERCISE 0: MAPPING
1-Level Temporal

Buffer

X

PE

To represent this… Write:

mapping:
- target: Buffer
type: temporal
factors: R=3 P=16
permutation: RP

for p = [0:16):
for r = [0:3):
Output[p] += Weight[r] * Input[p+r];

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

13

EXERCISE 0

Follow the instructions in the README.

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

http://accelergy.mit.edu/isca20_tutorial.html

14

EXERCISE 0
Run Timeloop model:

>> timeloop-model arch.yaml problem.yaml map.yaml

Output:

timeloop-model.map.txt

Buffer [Weights:3 Inputs:18 Outputs:16]

| for P in [0:16)
| for R in [0:3)

timeloop-model.stats.txt
......
......
Summary Stats

Utilization: 1.00
Cycles: 48
Energy: 0.00 uJ
Area: 0.00 mm^2

MACCs = 48
pJ/MACC

MACC = 0.60
Buffer = 1.54
Total = 2.14

Infrastructure Download Instructions: http://accelergy.mit.edu/isca20_tutorial.html

Follow the instructions in the exercise’s README

http://accelergy.mit.edu/isca20_tutorial.html

15

EXERCISE 1: ARCHITECTURE
2-Level Temporal

Main Memory

Buffer

X

PE

To represent this… Write:

arch:
subtree:
- name: System
local:
- name: MainMemory
class: DRAM
attributes:
word-bits: 8

subtree:
- name: PE
local:
- name: Buffer
class: SRAM
attributes:
entries: 64
instances: 1
word-bits: 8

- name: MACC
class: intmac
attributes:
word-bits: 8

System

16

EXERCISE 1: MAPPING
Weight Stationary

To represent this… Write:

mapping:
- target: MainMemory
type: temporal
factors: R=3 P=1
permutation: RP # inner to outer

- target: Buffer
type: temporal
factors: R=1 P=16
permutation: PR # inner to outer

for p1 in [0:1)
for r1 in [0:3)

for r0 in [0:1)
for p0 in [0:16)
Output[p] += Weight[r] * Input[p+r];

Buffer

Metric Weights Inputs Outputs

Buffer occupancy 1 P P

MainMemory accesses R W P

Buffer accesses PR PR 2PR

Expected outputs

17

EXERCISE 1: MAPPING
Output Stationary

To represent this… Write:

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16
permutation: PR

- target: Buffer
type: temporal
factors: R=3 P=1
permutation: RP

Buffer

Metric Weights Inputs Outputs

Buffer occupancy R R 1

MainMemory accesses R W P

Buffer accesses PR PR 2PR

Expected outputs

for r1 in [0:1)
for p1 in [0:16)

for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

18

EXERCISE 1

Follow the directions in the README.

19

EXERCISE 2: PROBLEM

for k = [0:K)
for r = [0:R):
for p = [0:P):
Output[k][p] += Weight[k][r] * Input[p+r];

Conv1D + Output Channels

P

Weights

Inputs

Outputs

R

W=P+R-1

Think about:To represent this… And write:

problem:
shape:
name: Conv1D
dimensions: [K, R, P]
data-spaces:
- name: Weights
projection:
- [[K]]
- [[R]]

- name: Inputs
projection:
- [[P], [R]]

- name: Outputs
projection:
- [[K]]
- [[P]]
read-write: True

instance:
K: 32
R: 3
P: 16

Weights

Inputs

R

W=P+R-1

O
p
e
ra

tio
n
 S

p
a
c
e

Data Spaces
P
ro

je
c
ti

o
n

Outputs

K

K

20

EXERCISE 2: MAPPINGS
Untiled vs. K-tiled

Untiled mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16 K=32
permutation: RPK

- target: Buffer
type: temporal
factors: R=3 P=1 K=1
permutation: RPK

for k1 in [0:32)
for p1 in [0:16)
for r1 in [0:1)

for k0 in [0:1)
for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

Buffer

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=16 K=16
permutation: RPK

- target: Buffer
type: temporal
factors: R=3 P=1 K=2
permutation: RPK

for k1 in [0:16)
for p1 in [0:16)
for r1 in [0:1)

for k0 in [0:2)
for p0 in [0:1)
for r0 in [0:3)
Output[p] += Weight[r] * Input[p+r];

Buffer

K-tiled

21

EXERCISE 2

Follow the directions in the README.

22

EXERCISE 2: O.S. DATAFLOW VARIANTS
RWeights W = P+R-1Inputs POutputs

* =

K K

Weights Inputs Outputs

R R 1

R R 1

R W 1

KR R 1

KbR R 1

R R+Pb-1 1

Buffer occupancy

Weights Inputs Outputs

KR KW KP

KPR W KP

KR W KP

KR W KP

KR (K/Kb)W KP

K(P/Pb)R W KP

MainMemory accesses

Weights Inputs Outputs

KR W KP

Alg. min. MainMemory accesses

ሧ

𝑘=1

𝐾

ሧ

𝑝=1

𝑃

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

ሧ

𝑝=1

𝑃

ሧ

𝑘=1

𝐾

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

ሧ

𝑘1=1

𝐾1

ሧ

𝑝=1

𝑃

ሧ

𝑘0=1

𝐾0

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

where 𝐾 = 𝐾1 × 𝐾0 and 𝑘 = 𝑘1𝐾0 + 𝑘0

ሧ

𝑝1=1

𝑃1

ሧ

𝑘=1

𝐾

ሧ

𝑝0=1

𝑃0

ሧ

𝑟=1

𝑅

(𝑂𝑘𝑝 += 𝑊𝑘𝑟𝐼𝑝+𝑟−1)

where 𝑃 = 𝑃1 × 𝑃0 and 𝑝 = 𝑝1𝑃0 + 𝑝0

23

EXERCISE 3: ARCHITECTURE
3-Level Temporal

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

24

EXERCISE 3B: BYPASSING LEVELS
3-Level Temporal with Level Bypassing

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Weights Inputs Outputs

Weights Inputs

Outputs

mapping:

...

- target: GlobalBuffer
type: bypass
keep:
- Weights # same as default
- Inputs # same as default
bypass:
- Outputs # override

- target: RegisterFile
type: bypass
keep:
- Outputs # same as default
bypass:
- Weights # override
- Inputs # override

25

EXERCISE 3B: BYPASSING

Bypassing

• Avoids energy cost of reading and writing buffers

• May result in additional accesses to outer buffers

• Does not change energy cost of moving data over network wires

For brevity in expressing mappings, Timeloop’s evaluator assumes each datatype is stored at each level.

• We will see later that Timeloop’s mapper makes no such assumption

Follow the directions in the README.

Challenge

• Experiment with bypass strategies to find out if there’s any benefit in bypassing for this problem.

26

EXERCISE 4: SPATIAL INSTANCES
3-Level with multiple PEs

architecture:
subtree:
- name: System
local:
- name: MainMemory
class: DRAM
attributes:
......

subtree:
- name: Chip
local:
- name: GlobalBuffer
class: SRAM
attributes:
......

subtree:
- name: PE[0..15]
local:
- name: RegisterFile
class: regfile
attributes:
......

- name: MACC
class: intmac
attributes:
......

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

RegisterFile

X

PE

RegisterFile

X

PE

…

27

EXERCISE 4: MAPPING
Spatial levels need loops too

To represent this…
Write:

mapping:
- target: MainMemory
type: temporal
factors: R=1 P=1 K=1
permutation: PRK

- target: GlobalBuffer
type: temporal
factors: R=3 P=1 K=2
permutation: PRK

- target: GlobalBuffer
type: spatial
factors: R=1 P=1 K=16
permutation: PRK

- target: RegisterFile
type: temporal
factors: R=1 P=16 K=1
permutation: PRK

for k3 in [0:1)
for r3 in [0:1)
for p3 in [0:1)

for k2 in [0:2)
for r2 in [0:3)
for p2 in [0:1)

spatial_for k1 in [0:16)
spatial_for r1 in [0:1)
spatial_for p1 in [0:1)

for k0 in [0:1)
for r0 in [0:1)
for p0 in [0:16)

RegisterFile

MainMemory

GlobalBuffer

Spatial: GlobalBuffer →
RegiserFile

28

EXERCISE 4

Follow the directions in the README.

29

EXERCISE 4: SPATIAL INSTANCES

Spatial levels need to be mapped.

By convention, a block of spatial_for loops representing a spatial fanout from storage
level Outer to storage level Inner are described as a spatial mapping directive
targeted at level Outer.

Specifying complete mappings manually is beginning to get tedious. Space of choices
and consequences is getting larger. Moving to realistic problem shapes and hardware
topologies, we get a combinatorial explosion.

Fortunately, Timeloop’s mapper was built exactly for this.

30

FUN WITH TIMELOOP

THE MAPPER

31

INVOKING THE MAPPER

ACCELERGY

Problem

Architecture

Constraints

Mapper parameters

To understand how the mapper works, let’s go back to a simpler hardware architecture.

32

EXERCISE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

mapping:
- target: MainMemory

type: temporal
factors: R=1 P=16 K=4
permutation: RPK

- target: GlobalBuffer
type: temporal
factors: R=3 P=1 K=2
permutation: RPK

- target: RegisterFile
type: temporal
factors: R=1 P=1 K=4
permutation: RPK

Recall:

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

33

EXERCISE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Mapspace: An enumeration
of ways to fill in these _
red blanks:
• Factors
• Permutations
• Dataspace Bypass*

* = not shown in example

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

34

EXERCISE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Mapspace: An enumeration
of ways to fill in these _
red blanks:
• Factors
• Permutations
• Dataspace Bypass

Mapspaces can be
constrained by the user.
• Architecture constraints
• Mapspace constraints

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

R
1 1

35

EXERCISE 5: MAPSPACE
Arch: 3-Level, Problem: 1D + Output Channels

Main Memory

RegisterFile

X

PE

System

GlobalBuffer

Chip

Mapspace: An enumeration
of ways to fill in these _
red blanks:
• Factors
• Permutations
• Dataspace Bypass

Mapspaces can be
constrained by the user.
• Architecture constraints
• Mapspace constraints

Mapper runs a search
heuristic over the
constrained mapspace

mapping:
- target: MainMemory

type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: GlobalBuffer
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

- target: RegisterFile
type: temporal
factors: R=_ P=_ K=_
permutation: _ _ _

Mapper constructs a
mapping template:

R
1 1

36

EXERCISE 5: MAPSPACE CONSTRAINTS

We provide 3 alternative sets of constraints:

• 1mapping: Constrain mapspace to the point that only 1 legal mapping remains in
it!

• freebypass: Factors and permutations are forced, but bypass options are left
unspecified.

• Each of 3 dataspaces may either be kept or bypassed at each of the 2 inner levels
(RegisterFile and GlobalBuffer) => (2^2)^3 = 64 choices!

• Does Timeloop find a better bypassing strategy?

• null: Fully unconstrained.

• How large is the mapspace?

• Does Timeloop find a better mapping?

37

EXERCISE 6: PROBLEM

for r = [0:R):
for s = [0:S):
for p = [0:P):
for q = [0:Q):
for c = [0:C):
for k = [0:K):
for n = [0:N):
Output[n][k][q][p] +=

Weight[c][k][r][s] *
Input[n][c]

[q*Hstride+s*Hdilation]
[p*Wstride+r*Wdilation];

Convolutional Network Layer

.

.

.
N

.

.

.
N

C

C

K

K
C

P

Weights Inputs
Outputs

S

R

H=
Q+S-1

W=P+R-1

Q

problem:
shape:
name: CNNLayer
dimensions:
- C
- K
- R
- S
- P
- Q
- N

coefficients:
- name: Wstride
default: 1

- name: Hstride
default: 1

- name: Wdilation
default: 1

- name: Hdilation
default: 1

data-spaces:
- name: Weights
projection:
- [[C]],
- [[K]],
- [[R]],
- [[S]]

- name: Inputs
projection:
- [[N]]
- [[C]]
- [[S, Hdilation], [Q, Hstride]]
- [[R, Wdilation], [P, Wstride]]

- name: Outputs
projection:
- [[N]]
- [[K]]
- [[Q]]
- [[P]]
read-write: True

38

EXERCISE 6: ARCHITECTURE
Eyeriss-256

DRAM

System

GlobalBuffer

Eyeriss

…

InputRegFile

X

PE

PsumRegFile

WeightRegFile

InputRegFile

X

PE

PsumRegFile

WeightRegFile

InputRegFile

X

PE

PsumRegFile

WeightRegFile

39

EXERCISE 6: CNN LAYER ON EYERISS-256

Mapper is multi-threaded.

• Mapspace is split between each mapper thread.

• Default number of threads = number of logical CPUs on host machine.

For long mapper runs, you can use the interactive ncurses-based status tracker by setting
mapper.live-status = True

• Tracks various statistics for each mapper thread:

• Best energy-efficiency/performance seen so far

• Number of legal/illegal/total mappings examined so far

• Number of consecutive illegal mappings

• Number of consecutive legal sub-optimal mappings

40

TUNING THE MAPPER’S SEARCH

Search heuristics (as of this recording)

• Linear

• Random

• Hybrid

Optimization criteria: prioritized list of

statistics emitted by the model, e.g.,

• [cycles, energy]

• [last-level-accesses]

Termination conditions

• Mapspace exhausted

• #Valid mappings encountered >= “search-size”

• #Consecutive invalid mappings encountered >= “timeout”

• #Consecutive sub-optimal valid mappings encountered >= “victory-condition”

• Ctrl+C

41

HARDWARE X/Y DIMENSIONS

name: GlobalBuffer
class: SRAM
attributes:

...

name: RegFile[0..11]
class: regfile
attributes:

...

...
meshX: 4

mapping:
target: GlobalBuffer
type: spatial
factors: C=4 K=3 R=1 S=1 P=1 Q=1 N=1
permutation: C K R S P Q N
split: 1

RegFile RegFile RegFile RegFile

RegFile RegFile RegFile RegFile

RegFile RegFile RegFile RegFile

GlobalBufer

Mapping (also applies to Constraints)

Architecture

map C=4

m
a
p
 K

=
3

0 1 2 3 4 5 6 7

X Y

42

HARDWARE X/Y DIMENSIONS

RegFile RegFile RegFile RegFile

RegFile RegFile RegFile RegFile

RegFile RegFile RegFile RegFile

GlobalBufer

map K=4

m
a
p
 K

=
3

What if you wanted this mapping instead?

factors: K=4 K=3 R=1 S=1 P=1 Q=1 N=1
permutation: K K R S P Q N
split: 1

Use a simulation hack: a “dummy” buffer

map: K=4

m
a
p
 K

=
3 RegFile RegFile RegFile RegFile

RegFile RegFile RegFile RegFile

RegFile RegFile RegFile RegFile

GlobalBufer

dummy dummy dummy dummy
size=0

bypass all

factors: K=4 C=1 R=1 S=1 P=1 Q=1 N=1
permutation: K C R S P Q N
split: 1

factors: K=3 C=1 R=1 S=1 P=1 Q=1 N=1
permutation: K C R S P Q N
split: 0

43

PARTITIONED BUFFERS

Input

RegFile

X

PE

Psum

RegFile

Weight

RegFile

To model:

InputRegFile

X

PE

PsumRegFile

WeightRegFile

Represent it as:

bypass Weights, Psums

bypass Inputs, Psums

bypass Weights, Psums

This is also a temporary workaround.
Partitioned buffers will be supported natively in future.

44

EXERCISE 6

Follow the directions in the README.

Complete the exercise and enjoy!

45

TIMELOOP

Timeloop aims to serve as a vehicle for quality research on flexible DNN accelerator architectures. The infrastructure is
released at https://github.com/NVlabs/timeloop under a BSD license.

Please join us in making Timeloop better and more useful for research opportunities across the community.

ACCELERGY

https://github.com/NVlabs/timeloop

46

Resources

• Tutorial Related

– Tutorial Website: http://accelergy.mit.edu/isca20_tutorial.html

– Tutorial Docker: https://github.com/Accelergy-Project/timeloop-accelergy-tutorial

• Various exercises and example designs and environment setup for the tools

• Other

– Infrastructure Docker: https://github.com/Accelergy-Project/accelergy-timeloop-infrastructure

• Pure environment setup for the tools without exercises and example designs

– Open Source Tools

• Accelergy: http://accelergy.mit.edu/

• Timeloop: https://github.com/NVlabs/timeloop

– Papers:

• A. Parashar, et al. "Timeloop: A systematic approach to DNN accelerator evaluation," ISPASS, 2019.

• Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” ISPASS, 2020.

• Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” ICCAD, 2019.

http://accelergy.mit.edu/isca20_tutorial.html
https://github.com/Accelergy-Project/timeloop-accelergy-tutorial
https://github.com/Accelergy-Project/accelergy-timeloop-infrastructure
http://accelergy.mit.edu/
https://github.com/NVlabs/timeloop

47

BACKUP

